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Abstract

The analysis of genetic variation to estimate demographic and historical parameters and
to quantitatively compare alternative scenarios recently gained a powerful and flexible
approach: the Approximate Bayesian Computation (ABC). The likelihood functions does
not need to be theoretically specified, but posterior distributions can be approximated by
simulation even assuming very complex population models including both natural and
human-induced processes. Prior information can be easily incorporated and the quality
of the results can be analysed with rather limited additional effort. ABC is not a
statistical analysis per se, but rather a statistical framework and any specific application
is a sort of hybrid between a simulation and a data-analysis study. Complete software
packages performing the necessary steps under a set of models and for specific genetic
markers are already available, but the flexibility of the method is better exploited
combining different programs. Many questions relevant in ecology can be addressed
using ABC, but adequate amount of time should be dedicated to decide among
alternative options and to evaluate the results. In this paper we will describe and
critically comment on the different steps of an ABC analysis, analyse some of the
published applications of ABC and provide user guidelines.
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Introduction

Population genetics is the analysis and understanding of
genetic variation within and between populations. Early
population geneticists, possibly also as a consequence
of the paucity of empirical data, were mainly concer-
ned with the theoretical framework of this discipline.
Assuming simple demographic and evolutionary mod-
els, expected genetic variation patterns were theoreti-
cally predicted and sometimes compared with the
available genetic information. During an intermediate
phase from the 1970s to the early 1990s, when classical
genetic markers were easily typed and the use of molec-

Correspondence: Giorgio Bertorelle, Fax: +390532249771;
E-mail: ggb@unife.it

© 2010 Blackwell Publishing Ltd

ular markers began to spread following the introduction
of the PCR, descriptive analyses of genetic variation
dominated. Methods such principal component analysis
(PCA), spatial autocorrelation, and analysis of molecular
variance (aMova) were widely used to describe patterns
and informally compare hypotheses (e.g. Menozzi et al.
1978; Sokal et al. 1987; Excoffier et al. 1992). Parameter
estimation and probability-based comparison of differ-
ent scenarios were limited and imprecise, due to the fact
that contemporary models were unrealistic and that
more complex demographic and genetic models were
theoretically intractable or computationally prohibitive.
More recently, the increased speed and power of per-
sonal computers favoured the spread of Monte Carlo
algorithms. Likelihood functions can be approximated
thanks to Markov Chain Monte Carlo (MCMC) methods
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(e.g. Kuhner et al. 1995; Nielsen & Wakeley 2001; Drum-
mond et al. 2002) and brute power can be used to simu-
late gene genealogies under virtually any demographic
and genetic model and to approximate the likelihood
functions even without explicitly defining them (e.g. Fu
& Li 1997; Tavare et al. 1997; Beaumont et al. 2002). This
latter approach, called approximate Bayesian computa-
tion (ABC) in its Bayesian version, is the topic of this
review. We believe that ABC is matching, for the first
time in population genetics studies, abundant genetic
data and realistic (which usually means complex) evolu-
tionary scenarios, allowing (i) the simultaneous estima-
tion of posterior distributions for many parameters
relevant in ecological studies; (ii) the probabilistic com-
parison of alternative models; and (iii) the quantitative
evaluation of the results” credibility.

Approximate Bayesian computation is intuitively very
easy: millions of genealogies are simulated assuming
different parameter values and under different models
and the simulations that produce genetic variation pat-
terns close to the observed data are retained and analy-
sed in detail. Parameter values and model features in
the retained simulations are of course interesting since
they are able to generate data sets with some properties,
measured by summary statistics (SuSt hereafter), found
in the observed data. At the same time, even if software
packages are now available (e.g. Cornuet et al. 2008;
Wegmann et al. 2010), ABC is not (yet?) user-friendly.
Users are typically required to: (i) carefully consider
each step in the ABC protocol since consensus on the
best way to proceed has not been reached; and (ii) esti-
mate the quality of the final results. In short, ABC is
mathematically graceless and rather intricate to apply,
but very flexible and powerful. In this review we will
describe and critically comment on the different steps
of an ABC analysis, analyse some of the published
applications of ABC and provide throughout the paper
some user guidelines. We will not discuss the recent
criticisms to ABC and in general to Bayesian methods
(Templeton 2010a,b). Detailed answers can be found,
for example, in Beaumont et al. (2010).

First of all, we present the main ABC concepts in a
historical perspective.

ABC: main concepts and history

Origins

The basic idea of ABC can be found in two papers pub-
lished in February 1997. Stimulated by Templeton
(1993) to find a correct estimator of the time to the most
recent common ancestor (TMRCA) for a set of DNA
sequences and assuming a simple demographic model
of a single demographically stable population, Fu & Li

(1997) and Tavaré et al. (1997) proposed simulating arti-
ficial data-sets and using SuSt to select among them.
The selected data-sets, used to estimate the posterior
distribution of the TMRCA, were either those having
exactly the same maximum number of pairwise differ-
ences k.« as the observed data set (Fu & Li 1997) or
those having a gene genealogy whose total length was
compatible with the observed number of segregating
sites, S (Tavare et al. 1997). The former approach can be
almost considered ‘theory-free’, since knowledge of
probability functions is not needed to approximate like-
lihood or posterior densities of the quantities of interest
under any specified demographic and mutational
model. This is the reason why the Fu & Li (1997) idea
can, in principle, be applied to any demographic sce-
nario, favouring its spread and extension with little
theoretical effort. On the other hand, the algorithm pro-
posed by Tavaré et al. (1997) had the merit of explicitly
introducing the Bayesian component [the parameter
0 =4Nu was not fixed as in Fu & Li (1997), but sam-
pled from a prior distribution], which is a key aspect of
modern ABC.

All the information contained in the data is not cap-
tured by a single SuSt. Also, if simulated data-sets are
retained only when they show a SuSt identical to the
SuSt observed in the real data, a large number of simu-
lations are discarded. Weiss & Von Haessler (1998)
addressed these two different but related problems
suggesting that more SuSt should be used to better
compute the distance between simulated and observed
data sets and only the simulations in which the distance
between simulated and observed data sets was higher
than a specific threshold should be discarded. In partic-
ular, Weiss & Von Haessler (1998) used S and k as
SuSt, where k is the mean pairwise difference between
DNA sequences, and applied the distance threshold to
k excluding the simulations where |k" — k| was larger
than 0.2 (I | indicates the absolute value, and the pres-
ence or absence of the prime refers to the SuSt in the
simulated and real the data sets, respectively). Weiss &
Von Haessler (1998) also pioneered the use of simula-
tions and SuSt to compare alternative demographic
models, but did not incorporate, as was done a year
later by Pritchard et al. (1999), the Bayesian step sug-
gested by Tavaré et al. (1997).

In synthesis, the most important aspect of ABC which
favoured its rapid development is that the likelihood
function does not need to be specified. Using ABC, the
posterior distribution of a parameter given the observed
data, P(01D), can be empirically reconstructed since the
likelihood is positively related to the distance between
summary statistics computed in real and simulated
data sets. More formally, when data are replaced by
summary statistics, the reconstructed distribution is
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P(01 p(SuStg;,,SuSt) < ¢) (hereafter, P(01 p< ¢), where p is
any distance metrics between observed and simulated
SuSt and ¢ an arbitrary threshold. In the limit of ¢ — 0
and if SuSt are sufficient (i.e. they capture all the rele-
vant features of the data), P(0p< &) will match exactly
P(01D). The idea of ABC is that a good balance
between accuracy and efficiency can be reached for
small values of ¢.

The formal definition of ABC

Beaumont et al. (2002) formalized and generalized the
ABC approach. They introduced a series of improve-
ments, evaluated the performance of ABC finding a rea-
sonably good agreement with full-likelihood methods
under some simple scenarios and discussed in some
detail the challenging aspects associated with the choice
of SuSt and of the most appropriate distance threshold
&. The actual birth of ABC coincides with this study.

The major improvement introduced by Beaumont
et al. (2002) is the regression step. Roughly speaking, the
slope of the regression line (regression is linear) between
a parameter and the vector of SuSt, estimated using the
retained simulations (regression is local) and giving
more weight to the simulations producing SuSt closer to
the observed values (regression is weighted), is used to
modify the retained parameters’ values and thus mimics
a situation in which all simulations produce SuSt equal
the observed values. If the chosen ¢ is very low, the
regression step is unnecessary, but the acceptance rate
will be very low and a very large numbers of simula-
tions will be required in most cases. Increasing ¢, the
acceptance rate obviously increases, but in this case
the regression step becomes important to improve the
approximation of P(01p = 0) by P(01p < ¢). For multiple
SuSt, p is usually computed as the Euclidean distance
between observed and simulated SuSt. The regression
step aims specifically at reducing this discrepancy
between simulated and observed SuSt by weighting and
adjusting the parameters in the retained simulations,
thus requiring fewer simulations. In these circum-
stances, Beaumont et al. (2002) showed that the regres-
sion method clearly outperforms the simple rejection
algorithm, in which retained parameters are directly
used to reconstruct their posterior distribution.

Recently, Leuenberger & Wegmann (2010) reformu-
lated the regression step using the General Linear
Model (GLM). SuSt are here response variables with
explicit causes within the model, whereas the regression
model introduced by Beaumont et al. (2002) considered
the SuSt as explanatory variables. Some pros and cons
of this approach are discussed in the ‘Step 8 section.
Under a simple one-population model which allows
(for comparison) the analytical computation of the
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results, the ABC-GLM approach provide a good
approximation of the posterior probability of the
parameters [i.e. it produces P(01p< ¢) close to (P(01D)],
even when the chosen &€ was moderately large (Leuen-
berger & Wegmann 2010).

ABC, MCMC and importance sampling

All simulations are independent under the ABC
approach. This means that if a simulated genealogy
produces an interesting data-set, i.e. a data-set with
SuSt very similar to the observed values, the next simu-
lation can be absolutely useless. In other words,
approaching by chance the real values of the parame-
ters during the simulations does not affect the machin-
ery of the method. This sounds inefficient and
Marjoram et al. (2003) introduced an algorithm to link
simulations along a Markov chain path. The parameters
for each new simulation are no longer sampled ran-
domly from their prior distributions but are obtained
starting from the values used in the previous simula-
tion. The parameter space is explored as in classical
MCMC methods, but a substantial difference is intro-
duced. In the Metropolis-Hasting ratio, which is used
to decide whether or not to accept a proposed parame-
ter value, the likelihood term is replaced by an indicator
function that takes a value of 1 if a simulated data set
produces a distance between observed and simulated
SuSt below ¢ and 0 otherwise. As expected, the accep-
tance ratio and thus the algorithm speed increase, but
simulations are not independent any more. One practi-
cal advantage of ABC, that simulations for a single
analysis can be run on many independent computers
and simply pooled at the end, is therefore lost with the
introduction of MCMC (but see Wegmann et al. 2009
for a possible solution). Embedding the ABC analysis in
a MCMC setting raises new problems, some of which
are common to any MCMC analysis (e.g. determining
the length of the chain, monitoring its mixing and
assessing the convergence) and some others are specific
of ABC-MCMC. Among the latter, the choice of & and
the definition of the proposal distribution appear crucial
to prevent the chain to stick to regions of low likelihood
(Sisson et al. 2007). Bortot et al. (2007) proposed to aug-
ment the parameter space by treating & as an additional
parameter and Wegmann et al. (2009) introduced a pre-
liminary simulation step to select the threshold € and to
set the proposal distribution.

Additional Monte Carlo schemes, such as population
(Cappe et al. 2004) and sequential (Doucet et al. 2001)
Monte Carlo, are under development. Here, importance
sampling arguments in various flavours and with vari-
ous acronyms (ABC-PRC, ABC-PMC, ABC-SMC) are
used with the same purpose of MCMC settings to better
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explore the parameter space, avoiding the simulation
(and the analysis) of unrealistic scenarios (see e.g. Sis-
son et al. 2007; Beaumont et al. 2009; Toni et al. 2009).
Preliminary simulations are used to identify a set of
parameters vectors, called particles, which are within a
certain distance & from the observed data. The particles
are then repeatedly re-sampled (according to a weight-
ing scheme that considers the prior distributions), per-
turbed (using a transition kernel) and filtered (on the
basis of new set of simulations and a decreased thresh-
old ¢). The particles after this iterative process tend to
converge to a sample from the posterior distribution of
the parameters. A final regression adjustment on the
retained parameters can be easily applied to all these,
as well as MCMC, algorithms (Beaumont ef al. 2009;
Wegmann et al. 2009; Leuenberger & Wegmann 2010).
The performances of ABC modified via MCMC or
importance sampling have been analysed on simple sim-
ulated or real data sets, but the few results available
appear controversial. For example, standard ABC, ABC-
PMC (ABC with population Monte Carlo, Beaumont
et al. 2009) and ABC-MCMC (under the Bortot et al. 2007
implementation) behave similarly when the computing
times are kept identical [Fig. 2 in Beaumont et al.(2009)],
whereas the ABC-MCMC implemented by Wegmann
et al. (2009) seems to reach the performances of conven-
tional ABC with a reduction of computational time.

ABC and model selection

Selecting among alternative models under the conven-
tional ABC framework is, at least in principle, even sim-
pler than parameter estimation. The mechanism of the
direct method introduced by Weiss & Von Haessler
(1998) and Pritchard et al. (1999) is straightforward.
After pooling all the simulations generated by different
models and retaining only those within a distance
threshold from the real data, the posterior probabilities
of each model is approximated by the fraction of simu-
lations produced by each of them. Accuracy can be very
low if the distance threshold ¢ is not close to 0, but can
be improved using the logistic regression approach
introduced by Beaumont (2008). The direct and the
logistic approaches have been used and compared in
various studies (Beaumont 2008; Cornuet et al. 2008;
Guillemaud et al. 2010) and the possible advantages of
some recent and more complex alternatives (see Toni
et al. 2009; Leuenberger & Wegmann 2010) are under
investigation.

ABC in nine steps

Here we update, extend and generalize the ABC
scheme reported in Excoffier et al. (2005). The steps of a

standard ABC analysis, which should be more techni-
cally defined as ‘rejection ABC’, are reported in Fig. 1.
Running such ABC analysis rigorously requires careful
development of each module, assemblage and valida-
tion.

Recently, two implementations of non-standard ABC
(using MCMC and PMC) have become available for gen-
eral users within the set of programs called ABCtoolbox
(Wegmann et al. 2010). The use of these variants implies
the replacement of a specific ABC module, but the gen-
eral scheme and strategy for the whole analysis does not
vary. We have therefore limited our description to the
standard ABC.

Step 1: setting the scene

The model, i.e. the history and the demography of the
populations with the associated parameters together
with the genetic parameters relevant for the typed loci,
needs to be clearly specified. Unsampled populations
can and should be included in the model if they are
potentially relevant for the sampled populations. In
principle, the complexity of the scenario is not a limit-
ing factor. Almost any demographic event, including
migration, colonization, extinctions, divergence, popula-
tion size changes, mass migrations or translocations,
can be easily simulated and thus considered by ABC.
Given this opportunity offered by ABC, it is easy to
understand why classical population genetics models
such as the stepping stone model (Kimura & Weiss
1964) or the divergence-with-isolation model (Wakeley
& Hey 1997) appear unrealistic.

The parameters used to specify the model for an ABC
analysis are the classic demographic and ecological
parameters (e.g. population sizes, migration/growth/
admixture rates, carrying capacities), the ages of any
sort of natural or human-mediated population event
(e.g. population split, translocation, invasion, bottle-
neck) and the genetic parameters (mutation and recom-
bination rates with associated sub-parameters if
needed). Under the hyperprior approach, particularly
suitable for situations in which many loci and/or many
species are simultaneously analysed (Excoffier et al.
2005; Hickerson et al. 2006; Beaumont 2008) the param-
eterization is hierarchical: hyper-parameters define
some general feature (e.g. the mean mutation rate at a
certain number of microsatellites) and single parameters
are defined conditionally. In this way, the parameter
space is explored more efficiently and more meaning-
fully. In principle, even aspects strictly related to the
structure of the model, such as the size of river seg-
ments (see Neuenschwander et al. 2008) or the number
of populations, can be defined as parameters to be
estimated. This approach can be useful especially in

© 2010 Blackwell Publishing Ltd
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preliminary ABC tests to identify and then fix, some
aspects of the model.

Depending on the available data and on the relative
influence of different events and parameters on the
genetic variation pattern, increasing the complexity of
the model can be either useless, time consuming or
result in poor exploration of the parameter space. Some
simple reasoning or preliminary simulations can be
used to better understand the impact of different
aspects of the model on the genetic variation pattern
and, consequently, used to fix the value of some param-
eters and/or simplify the model (e.g. Estoup & Clegg
2003; Pascual et al. 2007; Ludwig et al. 2008). We
believe, however, that ABC should be, at least at the
beginning of the analysis, used at its maximum poten-
tial power, i.e. devising realistic models. A detailed
analysis of the results, also comparing different runs
(e.g. Hickerson et al. 2006), will help to determine their
robustness.

Clearly, if different models are going to be compared,
all of them need to be defined at the outset. Models can
be nested or non-nested and it may be also interesting
to compare the differences between the results provided
by ABC under realistic and simplified versions of a
model.

Step 2: incorporating the prior information

As in typical Bayesian settings, prior information can
and should be incorporated in the ABC analysis. Prior
beliefs regarding the parameters and the models (if dif-
ferent models are compared) will be used to modify the
information contained in the data to obtain the poster-
ior distributions. These beliefs are incorporated in stan-
dard ABC analyses in the simulation step (Step 3), i.e.
when the parameters used to simulate each genetic var-
iation data will have values sampled from their prior
distributions and the number of simulations performed
using each of the different models will be proportional
to the prior probability assigned to each model.

Prior distributions should be obviously large enough
to include all the values which are considered at least
possible and their shape may well vary among parame-
ters. For example, mutation rates are often sampled
from gamma distributions, migration rates from expo-
nential distributions, times from uniform or exponential
distributions and population size from uniform or log-
uniform distribution. These choices may reflect previous
knowledge on some parameters (e.g. the gamma distri-
bution usually fit well real mutational data) and/or the
need to homogeneously sample the parameter across
different orders of magnitude (e.g. migration rates
between 107° and 1071). Of course, if the value of a
parameter is known with relatively high precision [e.g.

the starting time of an invasion (Pascual et al. 2007)],
the parameter should be fixed in the simulations. When
different scenarios are compared, they are usually con-
sidered with the same prior probability.

Sometimes, prior distributions are slightly modified if
“first shot” simulations produce data sets very different
from the observed data. This strategy can be necessary
in some circumstances, it can be regarded (Gelman
2008) as a test of prior beliefs when combined with
appropriate quality controls (see steps 7 and 9), but it
should be honestly and carefully adopted. There is
clearly a potential difficulty in using the data twice,
both for estimation and to ‘refine’ the priors and the
resulting posterior distributions will not be ‘true’ Bayes-
ian combinations of prior beliefs and likelihoods.

There are clear computation and logical advantages
in using prior distributions and the Bayesian approach
compared for example, to maximum likelihood meth-
ods, even when the prior knowledge is very limited
and consequently flat and wide prior distributions are
used (Huelsenbeck et al. 2001; Holder & Lewis 2003;
Beaumont & Rannala 2004). However, we believe that
more efforts should be dedicated to identifying infor-
mation to incorporate with confidence in the prior dis-
tributions, using previous genetic or non-genetic
studies. These efforts can be facilitated by the hyperpri-
or approach whereby at least the hyperprior distribu-
tions can be narrowed. For multilocus microsatellite
data for example, the mean and the variance (the
hyper-parameters) of the mutation rates are reasonably
well known, whereas the single-locus rates are not.
Incorporating robust prior beliefs will produce more
accurate and precise estimations and it will also facili-
tate the interpretation of the results. When prior defini-
tions are based on vague information, the effects of
errors in prior beliefs can, and should, be efficiently
investigated with a sensitivity analysis within the ABC
framework (e.g. Pritchard et al. 1999; Estoup et al. 2001;
Hickerson et al. 2006; Verdu et al. 2009; Guillemaud
et al. 2010).

Step 3: choosing the summary statistics

The whole ABC machinery is based on the comparison
between observed and simulated data sets and this
comparison is made after reducing data sets to sum-
mary statistics, SuSt. Unfortunately, there is still no gen-
eral rule as to which and how many SuSt should be
used, although the importance of this step was already
recognized since the formal introduction of ABC (Beau-
mont et al. 2002; Marjoram et al. 2003). The selected
SuSt should be able to capture the relevant features of
the data. Ideally, SuSt should be sufficient, i.e. the pos-
terior probability of a parameter given these SuSt

© 2010 Blackwell Publishing Ltd



should be the same as its posterior distribution given
the complete data set (Marjoram & Tavare 2006). In
practice, a SuSt should not be included in this set if it
does not provide any additional information about the
data useful for the estimation process. Easy to say, but
very difficult to realize. The sufficiency of a set of SuSt
is strictly dependent on the model, parameters and
data, meaning that some preliminary analysis is
required.

A single or few SuSt are almost always a very crude
representation of the data and likely produce biases in
ABC analyses (Marjoram et al. 2003). On the other
hand, too many SuSt (especially those providing little
information regarding the parameter being estimated)
introduce stochastic noise, reducing the fraction of
retained simulations and increasing the errors both
when the distance between observed and simulated
data sets is estimated and during the regression step
(Beaumont et al. 2002). More than 100 SuSt were used
by Rosenblum et al. (2007) to reconstruct the historical
demography of a lizard colonization process, but the
usual numbers of SuSt in published empirical studies
range between 5 and 20.

When several loci are typed, SuSt are usually means
and variances of single locus statistics (e.g. Ross-Ibarra
et al. 2009) or indices correlated to the shape of the dis-
tribution of phenotypes (e.g. AFLP data, see Foll et al.
2008) or allele (e.g. SNP data) frequencies. At least three
methods, not yet implemented for practical use, have
been suggested to identify the best set of SuSt. Hamil-
ton et al. (2005) used the determination coefficients
between each SuSt and each parameter, estimated from
a set of preliminary simulations, to weight differentially
the SuSt. The distance between observed and simulated
data sets is thus computed separately for each parame-
ter. This is not the same as selecting a subset of SuSt,
but is a criteria to avoid this selection and to almost
exclude by weighting some SuSt from the estimation
process. Joyce & Marjoram (2008) have introduced a
‘sufficiency’ score to be assigned to each SuSt in a sort
of preliminary experiment. The whole ABC estimation
step is performed several times adding and removing
different SuSt and retaining only those that significantly
modify the posterior distribution of the parameter of
interest. Wegman et al. (2009) suggest extracting a lim-
ited number of orthogonal components, appropriate to
explain the parameters variation, from a large number
of SuSt. These new variables, estimated by a partial
least square regression approach with coefficients esti-
mated on the basis of a set of preliminary simulations,
are then used as SuSt. So far, only modest advantages
of these approaches have been demonstrated. Consider-
ing the actual state of the art, we recommend a selec-
tion of the SuSt known to be informative about the

© 2010 Blackwell Publishing Ltd
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parameters of interest, an appropriate number of simu-
lations (see below) and, in particular, some preliminary
tests showing that the selected SuSt can be used to rea-
sonably recover models and parameters in data sets
simulated under scenarios relevant for the addressed
question (see e.g. Becquet & Przeworski 2007; Rosenb-
lum et al. 2007; Neuenschwander et al. 2008).

Step 4: simulating the model(s)

A large number of data sets should be simulated under
the model(s) defined at Step 1, with each simulation
using a different set of parameter values sampled from
the corresponding prior distribution. Simulation is the
time-consuming step, but an important advantage of
standard ABC (but not of ABC coupled with MCMC or
importance sampling) is that the data sets generated by
simulation can be used for estimation or model selec-
tion on many different data sets. The simulated data
sets, which are commonly reduced to the values of the
chosen SuSt due to disk space limitations, are stored in
the reference table. The same reference table can then be
used for inference on the real data sets but also, for
example, on pseudo-observed data sets, or pods. Pods
are specific data sets generated with known parameter
values by simulation and are very useful for investigat-
ing the bias/accuracy of the analysis (see steps 7 and 9).
The reference table is therefore very valuable, both
because it usually takes lot of computing time to gener-
ate it and because it will be recycled several times. It
seems thus a good idea to select accurately the software
for the simulations most appropriate for the scenario
and genetic markers of interest, to avoid hurried deci-
sions about the prior distributions and not to economize
on the number of simulations.

In principle, both backward coalescent and forward
classical simulations of the genetic data can be used for
ABC. In practice, only the former seem to have, today,
the required time-efficiency. Forward genetic simula-
tions have the advantage to substantially simplify the
implementation of natural selection and for this reason
they may spread for specific ABC implementations (e.g.
Itan ef al. 2009). We expect that efficient forward
genetic simulator (Chadeau-Hyam et al. 2008; Hernan-
dez 2008; Carvajal-Rodriguez 2010) coupled with ABC
will be used in the near future to analyse complex sce-
nario involving both selective and demographic pro-
cesses.

The available programs,
reported in Table 1 with their main characteristics, can
be classified in two major groups: ABC integrated and
ABC independent simulators. ABC integrated simula-
tors are assembled within a larger package designed to
perform all the ABC analyses. These user-friendly pack-

coalescent simulation
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ages have obvious advantages since the complete ABC
analysis can be accomplished using a single program.
Users considering these packages should, however, real-
ize that very complex models with specific prior distri-
butions of the parameters, as well as some kind of
genetic markers, may not be simulated. Similarly, other
steps of the analysis are constrained to specific func-
tions, whereas the ABC is by nature almost like brico-
lage, requiring frequent small adjustments (including
suggestions coming from new studies) and specific tests
for different data-sets. ABC non-integrated simulators
are independent programs simulating genetic variation
patterns. The best choice is probably to look initially at
the general ABC packages with integrated simulators
(see Table 1), figure out if the models and markers of
interest can be simulated, and, if not, find out if the
authors will release an updated version soon (the field
is moving fast). However, if some experience with pro-
gramming and script development is available (e.g. in
R, Phyton, or C++), choose an ABC independent simu-
lator. MS (Hudson 2002) and Simcoal2.0 (Laval & Excof-
fier 2004) are widely used ABC independent simulators.
For models which consider explicitly spatial or environ-
mental heterogeneity, i.e. where large numbers of de-
mes and their migration/colonization relationships
through time and space are assumed, Splatche (Currat
et al. 2004) or Aquasplatche (Neuenschwander 2006)
are more appropriate. Serial SimCoal (Anderson et al.
2005) can be used if ancient DNA data are available.
All these ABC independent simulators are very flexible
and allow access to the code, but need of course to be
‘pipelined” within all the other steps of the ABC analy-
sis. The recent introduction of a series of programs
within a single ABC tool box (Wegmann et al. 2010)
will likely alleviate this problem in the future.

Finally, we have to address another question with no
general answer: how many simulations? Empirical stud-
ies seem to converge towards the order of magnitude of
10°. Clearly, the complexity of the model and the
dimensions of the parameter affect the number of simu-
lations necessary to explore them. Our view is that
some preliminary simulations, for example testing the
convergence by comparing the results obtained in a few
independent analyses with 10*-10° simulations, can be
very useful. In some cases, for example in the relatively
simple scenarios analysed by Guillemaud et al. (2010)
even 10* simulations appear sufficient to reach accuracy
in model selection. However, if alternative versions of
ABC (for example ABC-MCMC) are not considered,
brute power rather than style is the main feature of
ABC analyses. We suggest therefore using large CPU
clusters (now relatively cheap and commonly available
in computing departments) and performing several mil-
lions of simulations in the final analysis for both model
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selection and parameter estimates. The current develop-
ment of specific implementations of genetic analyses
using graphics processing units (GPU) (e.g. Suchard &
Rambaut 2009) will possibly reduce the need for large
clusters soon.

Step 5: filtering the simulations

Simulations are retained when a multivariate distance
between observed and simulated SuSt is below a certain
distance threshold. In general, a simple Euclidean dis-
tance is computed on normalized SuSt and the thresh-
old is defined such that a small fraction of the
simulations (0.1-3%), corresponding to the smallest dis-
tances, are retained for the estimation step. A condi-
tional threshold (e.g. Thornton & Andolfatto 2006;
Putnam et al. 2007) can also be devised, implying that
simulations (see step 3) are repeated until a certain
number (in the order of 10°-10%) of accepted simula-
tions is reached. The distance threshold can be different
in model selection (step 6) and parameter estimation
(step 8). As underlined by Guillemaud et al. (2010), the
choice of the threshold should be always validated.
Pods should be simulated under a model (or models)
relevant for the question addressed and the threshold
producing reasonably stable and accurate reconstruction
of the known scenarios should be adopted. In any case,
it is a good idea always to check the effect of using dif-
ferent threshold values on the distribution of Euclidean
distances, on the comparison between observed SuSt
(separately or combined for example using PCA) and
the corresponding simulated distributions and, obvi-
ously, on the estimated posterior distributions of the
parameters and the models.

Step 6: model selection (if different models are
compared)

In step 6 of ABC, some results are obtained at last.
Comparing models, which actually means comparing
alternative hypotheses about a process, is the key to the
work of scientists. The ABC framework allows the com-
putation of the relative weight, i.e. the posterior proba-
bility, of different hypotheses (i.e. different models).
Probably for the first time, genetic variation data can be
used not only to reconstruct a plausible historical or
demographic scenario, often combining many different
analyses and tests, but also to assign a quantitative
‘belief score’ to each of many alternative and possibly
complex scenarios. ABC should also favour a reduction
in the length of manuscripts, since elaborated argu-
ments supporting or opposing each hypothesis can be
summarized by a corresponding set of meaningful
probability scores, the sum of which is always equal to



10 G. BERTORELLE, A. BENAZZO and S. MONA

one. The fear is that this reduction will be compensated
by extensive, technical and somewhat boring descrip-
tion of ABC options and validation, but general readers
will be able to skip these sections and easily compre-
hend the results and main conclusions.

All the models are generally simulated the same
number of times. This is equivalent to giving the same
prior probability to each model under comparison and
zero probability to any other model. Clearly, errors in
the latter assumption may produce incorrect conclu-
sions regarding the models support (see e.g. Templeton
2009), but the ABC framework allows for the evaluation
of the effects of excluding some models in the specific
situation under investigation (Guillemaud ef al. 2010).
In the final set of retained simulations, the data sets
produced by the more probable models will be over-
represented and the data sets produced by the less
probable models will be under-represented or even
absent. Intuitively, the probability of a model is propor-
tional to the relative frequency of the data sets it pro-
duces that are among the retained simulations (Weiss &
von Haeseler 1998; Pritchard et al. 1999). This frequency
is actually the direct estimator of the posterior probabil-
ity of a model, but this estimator is rarely accurate in
complex scenarios when, inevitably, the retained simu-
lations are either too few or also contain data sets not
closely matching the observed data. Recently, Leuenber-
ger & Wegmann (2010) proposed the use of a paramet-
ric General Linear Model to adjust the model
frequencies in the retained simulations. However, the
most reliable and tested method, also available in ABC
packages such as DIYABC (Cornuet ef al. 2008), is still
the adjustment based on the weighted multinomial
logistic regression introduced by Beaumont (2008). The
coefficients for the regression between a model indi-
cator (response) variable and the simulated SuSt (the
explanatory variables) can be estimated, allowing the
estimation of the posterior probability for each model at
the intercept condition where observed and simulated
SuSt coincide. CIs of the probabilities can be computed
as suggested by Cornuet et al. (2008).

The posterior probability of each model is of course
an intuitive score of our belief in that model. An addi-
tional index, comparable with a standard table of refer-
ence values where the evidence is assigned to
categories from ‘not worth more than a bare mention’
to ‘decisive’, is the Bayes factor. The Bayes factor can be
easily computed in an ABC analysis, being the ratio
between the posterior probabilities estimated in any
pair of models, divided by the ratio of their prior prob-
abilities. The latter ratio is of course equal to one if all
models have the same prior probability. This index is a
summary of the evidence provided by the data if favour
of a model as opposed to another and it can be inter-

preted as a measure of the relative success of the mod-
els at predicting the data (Kass & Raftery 1995). The
Bayes factor is also the ratio of the posterior odds to the
prior odds, meaning that it actually measures the
change of relative probabilities of the various scenarios
tested in the ABC analysis due to the knowledge
obtained from the genetic data.

Step 7: quality control in model selection

The ABC framework can be used to investigate the
robustness of model selection and parameter estimation
with relatively little additional effort (e.g. Fagundes
et al. 2007; Guillemaud et al. 2010). Data sets simulated
under specific scenarios with known parameter values
are tested against the same reference table (the large
number of simulated data sets, see step 4) used in the
analysis of the real data set.

Some hundreds of pseudo-observed data sets (the
pods, see step 3) are generated using each of the scenar-
ios considered in the model selection analysis. Obvi-
ously, other scenarios can be analysed to investigate the
effects of incomplete model specification on the infer-
ence (see step 6). The values of the parameters used for
generating pods are generally restricted to the best esti-
mates obtained from the analysis of the real data, but
they can be other values of interest. Pods generated
with fixed parameters will provide information about
the quality of the estimated model probabilities which
is restricted to a specific parameter set. The ability of
ABC to identify the correct model in a larger space of
parameter values can be analysed by generating pods
using parameter values sampled from, for example, the
prior distribution (Fagundes et al. 2007, Cornuet et al.
2008; Verdu et al. 2009) or the posterior distributions
estimated from the real data set.

Even if the definitions here are not rigorous, type I
and type II errors can be estimated for each scenario,
using, in turn, each scenario as the null or alternative
hypothesis. In practice, the type I error for, say, scenario
A is estimated as the fraction of pods generated under
scenario A that support other scenarios, whereas the
type II error for scenario A is estimated as the fraction
of pods generated under all the other scenarios that
support scenario A. A single pod is considered to be
supporting a scenario simply if the posterior probability
of this scenario is the largest. So, these are not really
type I and II errors in the classical frequestist frame-
work, whereby the null hypothesis is never accepted
and is rejected only if the data are manifestly incompat-
ible with it. These estimated errors can be very useful
when small, but otherwise their joint interpretation may
not be straightforward. Some additional insight into the
accuracy and power of the analysis can be obtained by
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computing mean and standard deviation of the poster-
ior probability of each model using the probabilities
estimated in the pods or the frequency of pods where
the CI of the model with the highest probability does
not overlap with the CI of the next supported model
(see Guillemaud et al. 2010). Pods could be also used to
estimate the distribution of the Bayes factor for each
simulated scenario also and thus to better interpret the
Bayes factor computed from the real data set.

Step 8: parameters estimation

For the single model considered in the analysis or for
the most supported model if different models are con-
sidered, the posterior distributions of the parameters
can be reconstructed by ABC. In many cases it is a good
idea to start looking at the estimated distribution of the
hyper-parameters or the composite parameters, the lat-
ter obtained by combining, in each simulation, the
parameters which are difficult to estimate separately
(for example, the population-mutation parameter Ny
which combines the population size N and the mutation
rate p).

As already explained, retained simulations have data
sets closer (but not identical) to the real data than do
non-retained simulations. Therefore, using the para-
meter values of the retained simulations as a sample
from their posterior probability distribution (the direct
approach), still maintains an undesirable component of
the prior. If all simulations are retained, i.e. with a
threshold of tolerance equal to infinity, the prior will be
recovered. At the other extreme, when the threshold is
proximate to 0, the direct approach works well, but
huge numbers of simulations are needed to obtain a rea-
sonable sample size from the posterior. We can imagine
that in the near future, especially if different groups will
share their reference tables, billions of simulations will
be available for the direct method. In the meantime, the
most commonly used method to adjust the imperfect
retained simulations is the local linear weighted regres-
sion introduced by Beaumont et al. (2002). The coeffi-
cients of a linear regression between each parameter and
the vector of the chosen SuSt are estimated from the
retained simulations (the local aspect) assigning to each
point a weight based on a function increasing as the dis-
tance between the observed and simulated data sets
decreases (the weighting aspect). The regression slope is
then used to adjust each parameter value from the
retained simulations towards the value expected in
correspondence with the observed SuSt. The intercept
corresponds to the posterior mean estimate of the
parameter. This approach, which can be applied to all
the parameters simultaneously, assumes local linearity
between parameters and SuSt (see Blum & Francois 2009
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for an extension to non-linear regression models), addi-
tivity and a multivariate normal distribution. However,
its use in the last 8 years after the original development
(Beaumont et al. 2002) suggest that small violations of
these assumptions only marginally affect the results.
The accuracy of the posterior distributions, when evalu-
ated under simple scenarios which allows also the use
of full-likelihood methods, is drastically increased by
the regression step compared to the direct approach
(Beaumont et al. 2002; Leuenberger & Wegmann 2010).
The commonly-used weighting function is the Epane-
chnikov kernel, but the effects on the final estimates of
applying other weighting schemes are probably limited.
Parameters are usually transformed before the regres-
sion step (and then back transformed after it) by a log
(e.g. Estoup et al. 2004; Hamilton et al. 2005; Crestanello
et al. 2009), logtan (e.g. Kayser et al. 2008; Ross-Ibarra
et al. 2008) or logit function (e.g. Cornuet et al. 2008).
Logtan and logit functions avoid adjustments outside
the prior distribution.

The general linear model (GLM) approach recently
proposed by Leuenberger & Wegmann (2010) and
implemented in ABCtoolbox (Wegmann et al. 2010) can
be used as an alternative method to estimate the poster-
ior distributions from the retained simulations. Addi-
tional testing is however necessary to identify the best
adjustment procedure under different conditions, since
GLM have both advantages (it considers the correlation
among SuSt and never produces posterior distributions
outside the priors) and disadvantages (it assumes nor-
mal distributions for the SuSt and is computationally
more intensive) compared to the earlier approach.

Of course, when a sample from the posterior distribu-
tion is available, point estimators and a relative measure
of accuracy are needed. Usually, a smoothed-posterior
density is fitted to the sample of adjusted parameter
values using specific methods (e.g. local-likelihood) and
after specifying a bandwidth. This fitting step is embed-
ded in the DIYABC package (Cornuet et al. 2008), but
we suggest analysing the rough-frequency distribution
of adjusted parameters to identify possible distortions
introduced by the fitting algorithm.

The point estimators usually computed from the pos-
terior densities are the mean, the mode, the median and
the intercept estimated in the regression step. No con-
sensus has been reached about the point estimator with
the smallest bias and variance and, as usual, the analy-
sis of simulated data sets relevant for the scenario of
interest can be useful. In general, however, the differ-
ences between point estimators are quite small if com-
pared with the width of their posterior distribution and
their choice is therefore almost irrelevant. Most impor-
tantly, the posterior density can be used to compute the
confidence of the estimates. Typical measures are the
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SD and the credible interval, the latter being the Bayes-
ian equivalent of the frequentist CI. A commonly used
credible interval is the X% highest posterior density or
HPD. The X% HPD interval is the interval which
includes the X% of the parameter values and within
which the density is never lower than the density out-
side it. Typically, 90 or 95 HPD limits are reported in
ABC analyses (e.g., Fagundes et al. 2007; Ludwig et al.
2008; Ray et al. 2010).

Step 9: quality control of the model and the parameters
estimation

The quality of the parameter estimates can be initially
evaluated by the proportion of parameter variance that
is explained by SuSt (see e.g. Fagundes et al. 2007;
Neuenschwander et al. 2008). This is the classical coeffi-
cient of determination. If only a small fraction of para-
meter variation in the reference table can be explained
by variation in SuSt, it is hard to imagine that the
parameter will be accurately estimated for the model(s)
under consideration and the number of individuals and
markers typed. It is possible that different SuSt might
improve the estimation (and this hypothesis can be
tested), but it is also possible that the parameter cannot
be estimated for that model/data package even if the
full likelihood could be computed. The coefficient of
determination should be taken with caution. Even a
small fraction of the explained variation can be sufficient
for reasonably precise estimates given enough data. In
analogy, population assignment of single individuals
can be quite accurate even when a small fraction of the
variation is attributed to between-population differences
(e.g. Latch et al. 2006; Colonna et al. 2009).

A more important evaluation of the quality of parame-
ter estimates under the specific scenario (or scenarios)
under investigation can be performed within the ABC
framework in exactly the same way we described for
model selection: generating pods, i.e. simulating data-
sets using known parameter values or parameter distri-
butions and analysing them (e.g. Excoffier et al. 2005;
Jensen et al. 2008). The best estimates of the parameters
obtained in step 8 (or their posterior distributions) are of
course interesting candidates for generating pods in this
analysis. For each pods, parameters are estimated using
the same reference table and the same procedure
applied to the real data and are then compared to the
true known values used to generate them. In fact, after
the analysis of, say, 1000 pods, 1000 posterior densities
will be available for each parameter. From each of these
distributions, a point estimator (e.g. the mode) and a
credible interval (e.g. the 90% HPD) can be computed
and several measures of the estimator quality can be
estimated (see e.g. Cornuet et al. 2008) by simply com-

paring these 1000 point estimators and credible intervals
with the true value of the parameter (i.e. the value used
in the simulations). The relative bias, the coefficient of
variation and the 90% or the 50% coverage (which are
the fraction of 90% or 50% HPD intervals in the 1000
simulations which include the true value), are usually
informative to ascertain the quality of the estimates. The
analysis and interpretation of other highly-correlated
measures is likely useless and confounding. Some cau-
tion is also needed in general for the interpretation of
these performance measures. For example, a relative
bias of 1 (100%) when estimating a true population size
of 1000, meaning that on the average the estimated
value will lay at a distance of 1000 individuals from the
true value, would appear enormous. But if the prior
knowledge on this parameter was entirely missing and a
uniform prior distribution ranging between 100 and
100 000 was defined, such bias should be considered
small. If possible, it is always very instructive to esti-
mate at least some parameters from the pods using
other non-ABC approaches and then compare the qual-
ity measures across methods (Guillemaud et al. 2010). A
large bias or variance using ABC can become acceptable
in comparison with the performance of other methods.

A third way to investigate the quality of the ABC
results is to compare the SuSt observed in the real data
with the posterior distribution of SuSt (e.g. Pascual
et al. 2007; Ingvarsson 2008). The posterior distribution
of SuSt is the SuSt distribution computed from pods
generated by simulation with parameters values sam-
pled from their estimated posterior distribution (Gel-
man et al. 2004). The rationale of this comparison,
which is testing the goodness-of-fit of the combination
‘scenario + posterior distributions of the parameters’ to
the data, is simple: if the estimated parameters under a
specific model have anything to do with what hap-
pened in the history of the real samples, then histories
simulated using these values should produce pods sim-
ilar to the data. If this is not the case, either the parame-
ter estimation is bad and/or the model is wrong. Using
a simple graphical inspection, the goodness-of-fit
should be considered high if the distance between
observed SuSt and the SuSt in their posterior distribu-
tion is low. A principal component analysis of the SuSt
in the real data set, the SuSt from their posterior distri-
bution and also the SuSt in the reference table can pro-
vide additional insights on the quality of the estimation
(Guillemaud et al. 2010; A. Estoup, pers. comm.). Also,
the performance of the estimation can be quantified by
computing bias and variance, relative to the observed
SuSt, of the posterior distributions of SuSt (see e.g.
Neuenschwander et al. 2008).

The comparison between observed SuSt and their
posterior distributions is also the basis for a posterior
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predictive test, which is the Bayesian analogous of the
parametric bootstrap under the frequentist framework
(Gelman et al. 2004). The goodness-of-fit of the inferred
combination ‘scenario + the posterior distribution of the
parameters” and the observed data is quantitatively mea-
sured by the posterior predictive P value. This bayesian
P value corresponds to the probability that data repli-
cated using the estimated posterior distributions of the
parameters are more extreme that the observed data
(Gelman et al. 2004). It can be specific for each SuSt (e.g.
Thornton & Andolfatto 2006) or appropriately combined
across SuSt (e.g. Ghirotto et al. 2010) and it can be also
be viewed as the probability of observing a less good fit
between the model and the data.

A posterior predictive test is a good practice in any
Bayesian model-based analysis, since it is the most
straightforward way to understand if the estimated
parameters are at least meaningful. In general, however,
its power to reject the null hypothesis under reasonable
population genetic condition and particularly when few
loci are analysed, is limited. Nonetheless, this test can
be useful to identify deviant SuSt with significant P val-
ues, possibly related to specific poorly estimated param-
eters or erroneous aspects of the demographic model.
The use of posterior predictive tests in ABC is therefore
recommended (e.g. Becquet & Przeworski 2007; Ing-
varsson 2008; Neuenschwander ef al. 2008; Ghirotto
et al. 2010).

Applications

The number of published applications of ABC to
genetic variation data increased rapidly following the
formal definition of the methodology in 2002 (Beaumont
et al. 2002), doubling for example between 2007 and
2008. A bibliographic Endnote list of 107 papers on
ABC, with about two-thirds of them presenting appli-
cations to real data, is provided as ‘Supporting informa-
tion’”.

Approximate Bayesian computation has been applied
to very different types of organisms, from bacteria
(e.g. Luciani et al. 2009; Wilson et al. 2009) to plants
(e.g. Francois et al. 2008; Ross-Ibarra et al. 2009) and
animals (e.g. Voje et al. 2009; Lopes & Boessenkool
2010). Microsatellite markers are the most commonly
used source of genetic information (43% of the studies),
followed by nuclear and mitochondrial DNA sequences
(each of them analysed in about 30% of the studies).
DNA data from ancient samples is included in about
10% of the studies. The number of loci varies widely
among papers, but the median value for STR and
nuclear sequences is 9 and 19, respectively.

After surveying the many options available when
running an ABC analysis, we outline in the ‘Supporting
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information’ the main trends. In general, we estimated
that if all the steps discussed in the previous section
were applied, about 60% of the published ABC applica-
tions would have significantly improved their robust-
ness. As positive examples of studies in the field of
molecular ecology where, in our opinion, the ABC
framework was properly used to estimate parameters,
to compare models and to evaluate the quality of the
model settings and the results, we would like to men-
tion Neuenschwander ef al. (2008) and Guillemaud
et al. (2010). Neuenschwander et al. (2008) recon-
structed the dynamic of the post-glacial colonization of
a river basin in Switzerland by the European bullhead
(Cottus gobio). Guillemaud et al. (2010), after extensively
investigating the capabilities of ABC in reconstructing
different aspects of an invasion process, applied this
method to investigate alternative scenarios for the intro-
duction to Europe of the North American pest of corn
Diabrotica virgifera.

Using a subset of 14 relatively homogeneous studies
and 152 parameter estimates, we also compared prior
and posterior distributions to obtain some general indi-
cations about the fraction of uncertainty about a species
that was reduced by ABC using genetic information.
The difference in width and location between prior and
posterior distributions was not clearly related to any
general features of the data sets, the model or the ABC
setting (such as the number of loci, the number of sam-
pled individuals, the number of parameters to be esti-
mated and the number of SuSt). If applied to a single
study, this result would appear counter intuitive, since
increasing for example the number of markers should
narrow the credible intervals (Excoffier et al. 2005). The
power of our analysis is clearly limited, but it is also
possible that large differences in the informativeness of
the data sets and in the complexity of the scenarios
across studies blurred the expected pattern. At any rate,
our analysis of more than 150 posterior distributions
seems to confirm the reasonable idea that guidelines
regarding the number of individuals and markers to
analyse, the maximum allowed complexity of the model
and the number of SuSt sufficient to summarize the
data, cannot be easily identified. Such guidelines can be
very specific only for the process and species of interest,
meaning that the set of preliminary simulations
described throughout this paper can be very useful to
plan the sampling, the typing and the final ABC setting.
Additional results and details of this analysis are pro-
vided as ‘Supporting information’, Table S1 and Fig. S1.

Conclusions

Approximate Bayesian computation has a short history
and very likely a long future. Molecular variation data
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are useful to reconstruct past events, estimate biological
parameters and compare alternative scenarios. The ABC
approach has the potential to become a standard
approach in molecular ecology, as well as in other fields
(Lopes & Beaumont 2010; Lopes & Boessenkool 2010). It
allows, for the first time, the efficient exploitation of the
enormous progresses in genetic typing and computing
speed to investigate very complex population models
including both natural and human-induced processes.

Throughout this paper we have summarized the theo-
retical and practical aspects of this methodology, which
should not be considered as a statistical analysis per se
but rather as a statistical framework. We also briefly
analysed its behaviour reviewing the published applica-
tions. Overall, we tried to stimulate the general reader
to consider ABC as a possible instrument for analysing
their data and also for planning sampling and typing
strategies. Many pros and cons, together with some
practical suggestions, were given. We schematically
recall and integrate them in this final section.

Complex and specific models can be analysed

The likelihood of models and parameters does not need
to be theoretically derived. We believe that, to a reason-
able extent, initial investigations under the ABC frame-
work should always take advantage of this quality and
challenge the data using very realistic models. Our
analysis of empirical studies suggests that even a few
markers can be useful to substantially increase the
knowledge about the process of interest. This is possible
in many cases by limiting the inference to well-esti-
mated composite and hyper-parameters. Importantly,
ABC provides the instruments to understand if the set
data + models can be used or not to reconstruct the
most likely scenario and if the estimate can progress
from composite to single parameters.

Quality of estimates and model selection can be
measured

After becoming familiar with the ABC framework, qual-
ity controls and power analyses can be performed with
rather limited additional effort. The simulation results,
stored in a single reference table, allow the analysis of
the real data set as well as many other simulated data
sets of interest and the feasibility of an accurate estima-
tion or a model selection can be analysed. It is recom-
mended that large reference tables stored by different
research groups become accessible, possibly promoting
a shared repository, since some preliminary analysis
before the sampling and typing using simulated data
sets or real data sets with properties (sample sizes,
number and type of loci, etc.) matching as closely as

possible the data sets in the reference table, could be
very useful. Interestingly, all these analyses in specific
ABC settings for different species and questions will
also help in understanding the general properties of the
method. Unfortunately, quality control is more difficult
under the ABC-MCMC and related serial approaches,
since the dependency among simulated data sets pre-
vents the compilation of a reference table.

Difficulties in performing an ABC analysis are
decreasing

The conceptual scheme of ABC is quite simple and
modular, implying that end users who do not find
enough flexibility in complete ABC packages [e.g. DIY-
ABC, Cornuet et al. (2008)] can develop specific imple-
mentations using the appropriate simulator (e.g. MS)
pipelined with relatively simple algebraic or statistical
computations. The post-simulation analyses are already
coded in available and easily modifiable R scripts or
C/C++ programs. A great collection of command-line
modules useful for an ABC analysis, which includes
also samplers based on MCMC (Marjoram ef al. 2003)
and PMC (Beaumont ef al. 2009), is also available in the
ABCtoolbox (Wegmann et al. 2010). Important ABC
implementations for estimating for example selection
coefficients or individual-based parameters will likely
imply the development of more efficient simulators (see
e.g. Przeworski 2003; Jensen et al. 2008; Leblois et al.
2009).

Probabilities are approximated

More studies are needed to better evaluate the degree
of approximation of ABC estimates compared to full-
data likelihood methods. These studies, however, are
restricted to scenarios where explicit likelihoods func-
tions are tractable. Fortunately, the ABC approach has
the potential to be used, case by case and if properly
implemented, as a self-evaluator of its performances
under known simulated scenarios. This potential,
clearly related to the fact that an ABC application is actu-
ally a hybrid between a simulation and a data-analysis
study, can be used to understand general questions
regarding, for example, the ability of ABC to select the
true among many simulated models even when the
parameters of the model are poorly estimated.

Time and patience are required

It is very important to realize that performing an ABC
study is not at all like using other methods for the analy-
sis of genetic variation data. Even if questions of interest
can be addressed using a single complete package such

© 2010 Blackwell Publishing Ltd



as DIYABC (Cornuet et al. 2008), adequate amount of
time should be dedicated to initially define the model(s)
and then decide among the many alternative options.
Crucial steps such as deciding on the number of simula-
tions, the SuSt and the acceptance threshold cannot be
based on general rules. The effects of these choices and
the performances of the estimates should be evaluated
and tested in each study. Fortunately, even if planning a
rigorous ABC analysis in all its steps, as well as modify-
ing the initial plan when needed, requires time and
patience, computer speed (for example exploiting hun-
dreds of CPUs and possibly, in the future, GPUs) and
data storage possibilities (terabytes are very cheap today)
are not a limiting factor in many studies. Elegant meth-
ods to efficiently reduce the number of relevant simula-
tions needed for the estimation process, such as ABC
coupled with MCMC, are under development and test-
ing, but their standardization and spread to non-experts
might not be rapid.
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Table S1 The ratio of posterior vs. prior distribution range
(RR) and the ratio of the largest vs. the smallest location mea-
sure in the posterior and the prior distributions (ER) computed
from 14 ABC studies and 152 parameter estimates. n: number
of parameter estimates subdivided into four groups; Q1 and
Q3: first and third quartile. Sample sizes are not the same for
RR and ER because the information required to compute them
was not homogeneous across studies. See text for additional
details.

Fig. S1 The relationship between ER and RR when the median
value of ER is computed separately within six RR bins. Bars
are quartiles, and the numbers indicate the fraction of point
belonging to each bin. Codes are as in Table 2.
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