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We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 Bc,
from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived
around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated
from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel
and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-
gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each
other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern
farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers
related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into
the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe

spread eastward into South Asia.

Between 10,000 and 9,000 Bc, humans began practicing agriculture
in the Near East'. In the ensuing five millennia, plants and animals
domesticated in the Near East spread throughout West Eurasia (a vast
region that also includes Europe) and beyond. The relative homoge-
neity of present-day West Eurasians in a world context? suggests the
possibility of extensive migration and admixture that homogenized
geographically and genetically disparate sources of ancestry. The spread
of the worldss first farmers from the Near East would have been a mech-
anism for such homogenization. To date, however, owing to the poor
preservation of DNA in warm climates, it has been impossible to study
the population structure and history of the first farmers and to trace
their contribution to later populations.

In order to overcome the obstacle of poor DNA preservation, we
took advantage of two methodological developments. First, we sampled
from the inner ear region of the petrous bone** which can yield up
to ~100 times more endogenous DNA than other skeletal elements®.
Second, we used in-solution hybridization® to enrich extracted DNA
for about 1.2 million single nucleotide polymorphism (SNP) targets®”,
making efficient sequencing practical by filtering out microbial and
non-informative human DNA. We merged all sequences extracted from
each individual, and randomly sampled a single sequence with min-
imum mapping and sequence quality to represent each SNP, restrict-
ing our investigation to individuals with at least 9,000 SNPs covered
at least once (Methods). We obtained genome-wide data that passed
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quality control for 45 individuals on whom we had a median coverage
of 172,819 SNPs. We assembled direct radiocarbon dates on skeletal
remains from 26 of these individuals (22 newly generated for this study)
(Supplementary Table 1).

The newly reported ancient individuals date to ~12,000-1,400 BC
and come from the southern Caucasus (Armenia), northwestern
Anatolia (Turkey), Iran, and the southern Levant (Israel and Jordan)
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(Supplementary Table 1 and Fig. 1a). (One individual had a radio-
carbon date that was not in agreement with the date of its archaeo-
logical context and was also a genetic outlier.) The samples include
Epipalaeolithic Natufian hunter—gatherers from Raqefet Cave in the
Levant (~12,000-9,800 Bc); a likely Mesolithic individual (HotuIIIb)
from Hotu Cave in the Alborz mountains of Iran (probable date of
9,100-8,600 BC); pre-pottery Neolithic farmers from ‘Ain Ghazal and
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Figure 2 | Basal Eurasian ancestry explains the reduced Neanderthal
admixture in West Eurasians. Basal Eurasian ancestry estimates are
negatively correlated to a statistic measuring Neanderthal ancestry
fa(Test, Mbuti; Altai, Denisovan).

Motza in the southern Levant (~8,300-6,700 BC); and early farmers
from Ganj Dareh in the Zagros mountains of western Iran (~8,200-
7,600 BC). The samples also include later Neolithic, Chalcolithic
(~4,800-3,700 BC), and Bronze Age (~3,350-1,400 BC) individuals
(Supplementary Information, section 1). We combined our data with
previously published ancient data’~! to form a dataset of 281 ancient
individuals. We then further merged these data with 2,583 present-day
people genotyped on the Affymetrix Human Origins array'>!° (238
newly generated) (Supplementary Table 2 and Supplementary
Information, section 2). We grouped the ancient individuals on
the basis of archaeological culture and chronology (Fig. 1a
and Supplementary Table 1). We refined the grouping on the basis of
patterns evident in Principal Components Analysis (PCA)"7 (Fig. 1b
and Extended Data Fig. 1), ADMIXTURE model-based clustering'®
(Extended Data Fig. 2a), and ‘outgroup’ f3-analysis (Extended Data
Fig. 3). We used f,-statistics to identify outlier individuals and to clus-
ter phylogenetically indistinguishable groups into ‘Analysis Labels’
(Supplementary Information, section 3).

We analysed these data to address six questions. (1) Previous work
has shown that the first European farmers harboured ancestry from
a Basal Eurasian lineage that diverged from the ancestors of north
Eurasian hunter-gatherers and East Asians before they separated
from each other'’. What was the distribution of Basal Eurasian ances-
try in the ancient Near East? (2) Were the first farmers of the Near
East part of a single homogeneous population, or were they regionally
differentiated? (3) Was there continuity between late pre-agricultural
hunter-gatherers and early farming populations, or were the hunter-
gatherers largely displaced by a single expansive population, as in early
Neolithic Europe?® (4) What is the genetic contribution of these early
Near Eastern farmers to later populations of the Near East? (5) What is
the genetic contribution of the early Near Eastern farmers to later pop-
ulations of mainland Europe, the Eurasian steppe, and to populations
outside West Eurasia? (6) Do our data provide broader insights about
population transformations in West Eurasia?

Basal Eurasian and Neanderthal ancestry

The ‘Basal Eurasians’ are a lineage hypothesized'® to have split off
before the differentiation of all other Eurasian lineages, including
eastern non-African populations such as the Han Chinese, and even
the early diverged lineage represented by the genome sequence of the
~45,000-year-old Upper Palaeolithic Siberian from Ust-Ishim'!. To test
for Basal Eurasian ancestry, we computed the statistic f,( Test, Han; Ust -
Ishim, Chimp) (Supplementary Information, section 4), which measures
the excess of allele sharing of Ust’-Ishim with a variety of Test popula-
tions compared to Han as a baseline. This statistic is significantly negative
(Z < —3.7) for all ancient Near Easterners as well as Neolithic and later
Europeans, consistent with them having ancestry from a deeply divergent

ARTICLE

Before European Neolithic

cco 000 oo $0.153

Bronze Age
o @ o
0.015

$0.045

Present
@ 0.046

Figure 3 | Genetic differentiation and its marked decrease over time in
West Eurasia. Pairwise Fsr distribution among populations belonging to four
successive time slices in West Eurasia; the median (red) and range of Fsr is shown.

Eurasian lineage that separated from the ancestors of most Eurasians
before the separation of Han and Ust’-Ishim. We used gpAdm (ref. 7) to
estimate Basal Eurasian ancestry in each Test population. We obtained
the highest estimates in the earliest populations from both Iran (66 £ 13%
in the likely Mesolithic sample, 48 & 6% in Neolithic samples), and the
Levant (44 & 8% in Epipalaeolithic Natufians) (Fig. 2), showing that Basal
Eurasian ancestry was widespread across the ancient Near East.

West Eurasians harbour significantly less Neanderthal ancestry
than East Asians'®~2!, which could be explained if West Eurasians (but
not East Asians) have partial ancestry from a source that diluted their
Neanderthal inheritance?. Supporting this theory, we observe a nega-
tive correlation between Basal Eurasian ancestry and the rate of shared
alleles with Neanderthals'? (Supplementary Information, section 5 and
Fig. 2). By extrapolation, we infer that the Basal Eurasian population
had lower Neanderthal ancestry than non-Basal Eurasian populations
and possibly none (95% confidence interval truncated at zero of 0-60%;
Fig. 2; Methods). The finding of little if any Neanderthal ancestry in
Basal Eurasians could be explained if the Neanderthal admixture into
modern humans ~50,000-60,000 years ago'! largely occurred after the
splitting of the Basal Eurasians from other non-Africans.

It is striking that the highest estimates of Basal Eurasian ancestry are
from the Near East, given the hypothesis that it was there that most
admixture between Neanderthals and modern humans occurred'®*%.
This could be explained if Basal Eurasians thoroughly admixed into
the Near East before the time of the samples we analysed but after the
Neanderthal admixture. Alternatively, the ancestors of Basal Eurasians
may have always lived in the Near East, but the lineage of which they
were a part did not participate in the Neanderthal admixture.

A population without Neanderthal admixture, basal to other
Eurasians, may have plausibly lived in Africa. Craniometric analyses
have suggested an affinity between the Natufians and populations of
north or sub-Saharan Africa®*?4, a result that finds some support from
Y chromosome analysis showing that the Natufians and successor
Levantine Neolithic populations carried haplogroup E, likely to be of
ultimately African origin, which has not been detected in other ancient
males from West Eurasia”® (Supplementary Information, section 6).
However, no affinity of Natufians to sub-Saharan Africans is evident
in our genome-wide analysis, as present-day sub-Saharan Africans do
not share more alleles with Natufians than with other ancient Eurasians
(Extended Data Table 1). (We could not test for a link to present-day
North Africans, who owe most of their ancestry to back-migration from
Eurasia?>?.) The idea of Natufians as a vector for the movement of
Basal Eurasian ancestry into the Near East is also not supported by our
data, as the Basal Eurasian ancestry in the Natufians (44 £ 8%) is con-
sistent with stemming from the same population as that in the Neolithic
and Mesolithic populations of Iran, and is not greater than in those pop-
ulations (Supplementary Information, section 4). Further insight into
the origins and legacy of the Natufians could come from comparison to
Natufians from additional sites, and to ancient DNA from North Africa.

Extreme differentiation in the ancient Near East
PCA on present-day West Eurasian populations (Methods and
Extended Data Fig. 1), on which we projected the ancient individuals
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(Fig. 1b), replicates previous findings of a Europe-Near East con-
trast along the horizontal principal component 1 (PC1) and parallel
clines (PC2) in both Europe and the Near East”®!? (Extended Data
Fig. 1). Ancient samples from the Levant clustered at one end of the
Near Eastern cline, and ancient samples from Iran at the other. The
two Caucasus hunter—gatherers (CHG)? are less extreme along PC1
than the Mesolithic and Neolithic individuals from Iran, while indi-
viduals from Chalcolithic Anatolia, Iran, Armenia, and Bronze Age
Armenia occupy intermediate positions. Qualitatively, the PCA has the
appearance of a quadrangle whose four corners are some of the oldest
samples: bottom-left, Western hunter—gatherers (WHG); top-left,
Eastern hunter—gatherers (EHG); bottom-right, Neolithic Levant and
Natufians; top-right, Neolithic Iran. This suggests that diverse ancient
West Eurasians can be modelled as mixtures of as few as four streams
of ancestry related to these populations, which we confirmed using
qpWave (ref. 7) (Supplementary Information, section 7).

We computed squared allele frequency differentiation between all
pairs of ancient West Eurasians*’ (Methods; Fig. 3 and Extended Data
Figs 2b and 4), and found that the populations at the four corners of
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the quadrangle had differentiation of Fsy=0.08-0.15, comparable to
the value of 0.09-0.13 seen between present-day West Eurasians and
East Asians (Han) (Supplementary Table 3). By contrast, by the Bronze
Age, genetic differentiation between pairs of West Eurasian populations
had reached its present-day low levels (Fig. 3): today, Fsr is <0.025 for
95% of the pairs of West Eurasian populations and <0.046 for all pairs
(Supplementary Table 3). These results point to a demographic pro-
cess that established high differentiation across West Eurasia and then
reduced this differentiation over time.

Continuity between hunter-gatherers and early farmers
Our data document continuity across the transition between hunter—
gatherers and farmers, separately in the southern Levant and in the
southern Caucasus-Iran highlands. The qualitative evidence for this
is that PCA, ADMIXTURE, and outgroup f; analysis cluster Levantine
hunter-gatherers (Natufians) with Levantine farmers, and Iranian and
CHG with Iranian farmers (Fig. 1b and Extended Data Figs 1, 3). We
confirm this in the Levant by showing that its early farmers share signif-
icantly more alleles with Natufians than with the early farmers of Iran:
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the statistic fy(Levant_N, Chimp; Natufian, Iran_N) is significantly
positive (Z=13.6). The early farmers of the Caucasus-Iran highlands
similarly share significantly more alleles with the hunter-gatherers of
this region than with the early farmers from the Levant: the statistic
fa(Iran_N, Chimp; Caucasus or Iran highland hunter-gatherers,
Levant_N) is significantly positive (Z > 6).

Admixture in the ancient Near East

Almost all ancient and present-day West Eurasians have evidence of
significant admixture between two or more ancestral populations, as
documented by statistics of the form f3( Test; Reference;, Reference,)
which, if negative, show that a test population’s allele frequencies tend
to be an intermediate between two reference populations'® (Extended
Data Table 2). To better understand the admixture history beyond
these patterns, we used gpAdm (ref. 7), which can evaluate whether a
particular test population is consistent with being derived from a set
of proposed source populations, and if so, infer mixture proportions
(Methods). We used this approach to carry out a systematic survey of
ancient West Eurasian populations to explore their possible sources of
admixture (Fig. 4 and Supplementary Information, section 7).

Among first farmers, those of the Levant trace approximately two-
thirds of their ancestry to people related to Natufian hunter—gatherers
and about one-third to people related to Anatolian farmers
(Supplementary Information, section 7). Western Iranian first farmers
cluster with the likely Mesolithic HotuIIIb individual and more
remotely with hunter-gatherers from the southern Caucasus (Fig.
1b), and share alleles at an equal rate with Anatolian and Levantine
early farmers (Supplementary Information, section 7), highlighting
the long-term isolation of western Iran.

During subsequent millennia, the early farmer populations of the
Near East expanded in all directions and mixed, as we can model
populations of the Chalcolithic and subsequent Bronze Age only as
having ancestry from two or more sources. The Chalcolithic people of
western Iran can be modelled as a mixture of the Neolithic people of
western Iran, the Levant and CHG, consistent with their position in the
PCA (Fig. 1b). Admixture from populations related to the Chalcolithic
people of western Iran had a wide impact, consistent with contrib-
uting around 44% of the ancestry of Levantine Bronze Age popula-
tions in the south and about 33% of the ancestry of the Chalcolithic
North-West Anatolians in the west. Our analysis shows that the ancient
populations of Chalcolithic Iran, Chalcolithic Armenia, Bronze Age
Armenia and Chalcolithic Anatolia were all composed of the same
ancestral components, albeit in slightly different proportions (Fig. 4b
and Supplementary Information, section 7).

Admixture into Europe, East Africa and South Asia
Admixture did not only occur within the Near East but also extended
towards Europe. To the north, a population related to people of
Chalcolithic Iran contributed about 43% of the ancestry of early Bronze
Age populations of the steppe. The spread of Near Eastern ancestry
into the Eurasian steppe was previously inferred” without access to
ancient samples, with a population related to present-day Armenians as
a suggested source”®. To the west, the early farmers of mainland Europe
were descended from a population related to Neolithic North-Western
Anatolians®. This is consistent with an Anatolian origin of farming in
Europe, but does not reject other sources, as the spatial distribution
of the Anatolian/European-like farmer populations is unknown. We
can rule out the hypothesis that European farmers stem directly from
a population related to the ancient farmers of the southern Levant?>%,
however, because European farmers share more alleles with Anatolian
Neolithic farmers than with Levantine farmers, as attested by the pos-
itive statistic fs(Europe_EN, Chimp; Anatolia_N, Levant_N) (Z=15).
Migration from the Near East also occurred towards the southwest into
East African populations, which experienced West Eurasian admixture
around 1,000 8¢, Previously, the West Eurasian population known
to be the best proxy for this ancestry was present-day Sardinians*!, who

ARTICLE

resemble Neolithic Europeans genetically'**2. However, our analysis
shows that East African ancestry is significantly better modelled by
Levantine early farmers than by Anatolian or early European farmers,
implying that the spread of this ancestry to East Africa was not from the
same group that spread Near Eastern ancestry into Europe (Extended
Data Fig. 5 and Supplementary Information, section 8).

In South Asia, our dataset provides insight into the sources of
Ancestral North Indians (ANI), a West Eurasian-related population
that no longer exists in unmixed form but contributes a variable amount
of the ancestry of South Asians®** (Supplementary Information,
section 9 and Extended Data Fig. 5). We show that it is impossible to
model the ANI as being derived from any single ancient population in
our dataset. However, it can be modelled as a mix of ancestries related
to both early farmers of western Iran and people of the Bronze Age
Eurasian steppe; all sampled South Asian groups are inferred to have
significant amounts of both ancestral types. The demographic impact of
steppe-related populations on South Asia was substantial, as the Mala,
a south Indian population with minimal ANI along the ‘Indian Cline’
of such ancestry***, is inferred to have around 18% steppe-related
ancestry, while the Kalash of Pakistan are inferred to have about 50%,
similar to present-day northern Europeans’.

Population transformations in West Eurasia and beyond
We were concerned that our conclusions might be biased by the par-
ticular populations we happened to sample, and that we would have
obtained qualitatively different conclusions without data from some key
populations. We tested our conclusions by plotting the inferred position
of admixed populations in PCA against a weighted combination of
their inferred source populations and obtained qualitatively consistent
results (Extended Data Fig. 6).

To further assess the robustness of our inferences, we developed a
method to infer the existence and genetic affinities of ancient pop-
ulations from unobserved ‘ghost’ populations (Supplementary
Information, section 10 and Extended Data Fig. 7). This method
takes advantage of the insight that if an unsampled ghost population
admixes with differentiated ‘substratum’ populations, it is possible
to extrapolate its identity by intersecting clines of populations with
variable proportions of ghost and substratum ancestry. Applying this
approach while withholding major populations, we validated some of
our key inferences, successfully inferring mixture proportions consist-
ent with those obtained when the populations were included in the
analysis. Application of this method highlights the impact of Ancient
North Eurasian (ANE) ancestry related to the ~22,000 Bc Mal’ta 1 and
~15,000 Bc Afontova Gora 2 (ref. 15) on populations living in Europe,
the Americas and Eastern Eurasia. Eastern Eurasians can be modelled
as arrayed along a cline with different proportions of ANE ancestry
(Supplementary Information, section 11 and Extended Data Fig. 8),
ranging from about 40% ANE in Native Americans, matching previ-
ous findings'*'%, to no less than around 5-10% ANE in diverse East
Asian groups including Han Chinese (Extended Data Figs 5, 7f). We
also document a cline of ANE ancestry across the East—-West extent of
Eurasia. Eastern hunter-gatherers (EHG) derive about three-quarters
of their ancestry from the ANE (Supplementary Information, section
11); Scandinavian hunter-gatherers”®!* (SHG) are a mix of EHG
and WHG; and WHG are a mix of EHG and populations related to
the Upper Palaeolithic Bichon from Switzerland (Supplementary
Information, section 7). Northwest Anatolians—with ancestry from
a population related to European hunter—gatherers (Supplementary
Information, section 7)—are better modelled if this ancestry is taken as
more extreme than Bichon (Supplementary Information, section 10).

The population structure of the ancient Near East was not inde-
pendent of that of Europe (Supplementary Information, section 4),
as evidenced by the highly significant (Z= —8.9) statistic fy(Iran_N,
Natufian;WHG, EHG) which suggests gene flow in ‘northeastern’
(Neolithic Iran/EHG) and ‘southwestern’ (Levant/ WHG) interaction
spheres (Fig. 4d). This interdependence of the ancestry of Europe and
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the Near East may have been mediated by unsampled geographically
intermediate populations® that contributed ancestry to both regions.

Conclusions

By analysing genome-wide ancient DNA data from ancient individuals
from the Levant, Anatolia, the southern Caucasus and Iran, we have
provided a first glimpse into the demographic structure of the human
populations that transitioned to farming. We reject the hypothesis that
the spread of agriculture in the Near East was achieved by the dis-
persal of a single farming population displacing the hunter—gatherers
they encountered. Instead, the spread of ideas and farming technology
moved faster than the spread of people, as we can determine from the
fact that the population structure of the Near East was maintained
throughout the transition to agriculture. A priority for future ancient
DNA studies should be to obtain data from older periods, which would
reveal the deeper origins of the population structure in the Near East.
It will also be important to obtain data from the ancient civilizations
of the Near East to bridge the gap between the region’s prehistoric
inhabitants and those of the present.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

No statistical methods were used to predetermine sample size. The experiments
were not randomized and the investigators were not blinded to allocation during
experiments and outcome assessment.

Ancient DNA data. In a dedicated ancient DNA laboratory at University College
Dublin, we prepared powder from 132 ancient Near Eastern samples, either by
dissecting the inner ear region of the petrous bone using a sandblaster (Renfert),
or by drilling using a Dremel tool and single-use drill bits and selecting the best
preserved bone fragments based on anatomical criteria. These fragments were then
powdered using a mixer mill (Retsch Mixer Mill 400)*.

We performed all subsequent processing steps in a dedicated ancient DNA
laboratory at Harvard Medical School, where we extracted DNA from the powder
(usually 75 mg, range 14-81 mg) using an optimized ancient DNA extraction
protocol®, but replaced the assembly of Qiagen MinElute columns and extension
reservoirs from Zymo Research with a High Pure Extender Assembly from the
High Pure Viral Nucleic Acid Large Volume Kit (Roche Applied Science). We built
a total of 170 barcoded double-stranded Illumina sequencing libraries for these
samples®’, of which we treated 167 with uracil-DNA glycosylase (UDG) to remove
the characteristic C-to-T errors of ancient DNA®®. The UDG treatment strategy is
(by—design) inefficient at removing terminal uracils, allowing the mismatch rate
to the human genome at the terminal nucleotide to be used for authentication®’.
We updated this library preparation protocol in two ways compared to the original
publication: first, we used 16U Bst2.0 Polymerase, Large Fragment (NEB) and
1% Isothermal amplification buffer (NEB) in a final volume of 25 pl fill-in reaction,
and second, we used the entire inactivated 25 pl fill-in reaction in a total volume
of 100 ul PCR mix with 1M of each primer®®. We included extraction negative
controls (where no sample powder was used) and library negative controls (where
extract was supplemented by water) in every batch of samples processed and carried
them through the entire wet laboratory processing to test for reagent contamination.

We screened the libraries by hybridizing them in solution to a set of oligonu-
cleotide probes tiling the mitochondrial genome®’, using the protocol described
previously’. We sequenced the enriched libraries using an Illumina NextSeq 500
instrument using 2 x 76 bp reads, trimmed identifying sequences (seven base pair
molecular barcodes at either end) and any trailing adapters, merged read pairs that
overlapped by at least 15 base pairs, and mapped the merged sequences to the RSRS
mitochondrial DNA reference genome*!, using the Burrows Wheeler Aligner*?
(bwa) and the command samse (v0.6.1).

We enriched promising libraries for a targeted set of ~1.2 million SNPs®
asin ref. 5, and adjusted the blocking oligonucleotide and primers to be appropriate
for our libraries. The specific probe sequences are given in supplementary data 2 of
ref. 7. and supplementary data 1 of ref. 6. We sequenced the libraries on an Illumina
NextSeq 500 using 2x 76 bp reads. We trimmed identifying sequences (molecular
barcodes) and any trailing adapters, merged pairs that overlapped by at least 15
base pairs (allowing up to one mismatch), and mapped the merged sequences to
hg19 using the single-ended aligner samse in bwa (v0.6.1). We removed duplicated
sequences by identifying sets of sequences with the same orientation and start and
end positions after alignment to hgl9; we picked the highest quality sequence to
represent each set. For each sample, we represented each SNP position by a ran-
domly chosen sequence, restricting to sequences with a minimum mapping quality
(MAPQ > 10), sites with a minimum sequencing quality (>20), and removing two
bases at the ends of reads. We sequenced the enriched products up to the point that
we estimated that generating a hundred new sequences was expected to add data
on less than about one new SNP¥,

Testing for contamination and quality control. For each ancient DNA library,
we evaluated authenticity in several ways. First, we estimated the rate of matching
to the consensus sequence for mitochondrial genomes sequenced to a coverage of
at least tenfold from the initial screening data. Of the 76 libraries that contributed
to our dataset (coming from 45 samples), 70 had an estimated rate of sequencing
matching to the consensus of >95% according to contamMix” (the remaining
libraries had estimated match rates of 75-92%, but gave no sign of being outliers
in principal component analysis or X-chromosome contamination analysis so we
retained them for analysis) (Supplementary Table 1). We quantified the rate of
C-to-T substitution in the final nucleotide of the sequences analysed, relative to
the human reference genome sequence, and found that all the libraries analysed
had rates of at least 3% (ref. 37), consistent with genuine ancient DNA. For the
nuclear data from males, we used the ANGSD software*’ to obtain a conservative
X-chromosome estimate of contamination. We determined that all libraries that
passed our quality control and for which we had sufficient X-chromosome data
to make an assessment, had contamination rates of 0-1.5%. Finally, we merged
data for samples for which we had multiple libraries to produce an analysis dataset.
Affymetrix Human Origins genotyping data. We genotyped 238 present-day
individuals from 17 diverse West Eurasian populations on the Affymetrix Human
Origins array'®, and applied quality control analyses as previously described?
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(Supplementary Table 2). We merged the newly generated data with data from
2,345 individuals previously genotyped on the same array'®. All individuals that
were genotyped provided individual informed consent consistent with studies of
population history, following protocols approved by the ethical review committees
of the institutions of the researchers who collected the samples. The collection
and analysis of genome-wide data on anonymized samples at Harvard Medical
School for the purpose of studying population history was approved by the Harvard
Human Research Protection Program, protocol 11681, re-reviewed on 12 July 2016.
Anonymized aliquots of DNA from all individuals were sent to the core facility of
the Center for Applied Genomics at the Children’s Hospital of Philadelphia for gen-
otyping and data processing. For 127 of the individuals with newly reported data,
the informed consent was consistent with public distribution of data, and the data
can be downloaded at http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets.
html. To access data for the remaining 111 newly reported samples, researchers
should send a signed letter to D.R. containing the following text: “(a) I will not
distribute the data outside my collaboration; (b) I will not post the data publicly;
(c) I will make no attempt to connect the genetic data to personal identifiers for
the samples; (d) I will use the data only for studies of population history; (e) I will
not use the data for any selection studies; (f) I will not use the data for medical
or disease-related analyses; (g) I will not use the data for commercial purposes.”
Supplementary Table 2 specifies which samples are consistent with which type of
data distribution.

Datasets. We carried out population genetic analysis on two datasets: (i) HO
includes 2,583 present-day humans genotyped on the Human Origins array'*!¢
including 238 newly reported, (Supplementary Table 2; Supplementary
Information, section 2), and 281 ancient individuals on a total of 592,146 autoso-
mal SNPs. (ii) HOIIl includes the 281 ancient individuals on a total of 1,055,186
autosomal SNPs, including those present in both the Human Origins and Illumina
genotyping platforms, but excluding SNPs on the sex chromosomes or additional
SNPs of the 1,240k capture array that were included because of their potential
functional importance®. We used HO for analyses that involve both ancient and
present-day individuals, and HOIII for analysis on ancient individuals alone. We
also used 235 individuals from Pagani et al.>® genotyped at 418,700 autosomal
SNPs to study admixture in East Africans (Supplementary Information, section
8). Ancient individuals are represented in ‘pseudo-haploid’ form by randomly
choosing one allele for each position of the array.

Principal components analysis. We carried out principal components analysis
in the smartpca program of EIGENSOFT', using default parameters and the
Isgproject: YES' and numoutlieriter: 0 options. We carried out PCA on the HO
dataset for 991 present-day West Eurasians (Extended Data Fig. 1), and projected
the 278 ancient individuals (Fig. 1b).

ADMIXTURE analysis. We carried out ADMIXTURE analysis'® of the HO
dataset after pruning for linkage disequilibrium in PLINK*** with parameters
indep-pairwise 200 25 0.4, which retained 296,309 SNPs. We performed analysis
in 20 replicates with different random seeds, and retained the highest likelihood
replicate for each value of K. We show the K= 11 results for the 281 ancient samples
in Extended Data Fig. 2a (this is the lowest K for which components maximized in
European hunter-gatherers, ancient Levant, and ancient Iran appear).
f-statistics. We carried out analysis of f;-statistics, fs-ratio, and f;-statistics statistics
using the ADMIXTOOLS'® programs gp3Pop, gpF4ratio with default parame-
ters, and gpDstat with f4mode: YES, and computed standard errors with a block
jack-knife*. For computing f;-statistics with an ancient population as a target,
we set the inbreed: YES parameter. We computed f-statistics on the HOIIl dataset
when no present-day humans were involved and on the HO dataset when they
were. We computed the statistic f4( Test, Mbuti; Altai, Denisovan) in Fig. 2 on
the HOIII dataset after merging with whole genome data on 3 Mbuti individuals
from Panel C of the Simons Genome Diversity Project*’. We computed the den-
drogram of Extended Data Fig. 3 showing hierarchical clustering of populations
with outgroup f3-statistics using the open source heatmap.2 function of the gplots
package in R.

Negative correlation of Basal Eurasian ancestry with Neanderthal ancestry. We
used the Im function of R to fit a linear regression of the rate of allele sharing of a
Test population with the Altai Neanderthal as measured by f(Test, Mbuti; Altai,
Denisovan) as the dependent variable, and the proportion of Basal Eurasian ances-
try (Supplementary Information, section 4) as the predictor variable. Extrapolating
from the fitted line, we obtain the value of the statistic expected if Test is a popu-
lation of 0% or 100% Basal Eurasian ancestry. We then compute the ratio of the
Neanderthal ancestry estimate in Basal Eurasians relative to non-Basal Eurasians
as f4(100% Basal Eurasian, Mbuti; Altai, Denisovan)/ f;(0% Basal Eurasian, Mbuti;
Altai, Denisovan). We use a block jack-knife*®, dropping one of 100 contiguous
blocks of the genome at a time, to estimate the value and standard error of this
quantity (9 £ 26%). We compute a 95% confidence interval based on the point
estimate &= 1.96-times the standard error: —42 to 60%. We truncated to 0-60%
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on the assumption that Basal Eurasians had no less Neanderthal admixture than
Mbuti from sub-Saharan Africa.

Estimation of Fgy coefficients. We estimated Fsy in smartpca'” with default para-
meters, inbreed: YES, and fstonly: YES.

Admixture graph modelling. We carried out Admixture Graph modelling with
the gpGraph software!® using Mbuti as an outgroup unless otherwise specified.
Testing for the number of streams of ancestry. We used the gp Wave®>*8 software,
described in Supplementary Information, section 10 of ref. 7, to test whether a set of
‘Left’ populations is consistent with being related via as few as N streams of ancestry
to a set of ‘Right’ populations by studying statistics of the form X(u, v) = F4(u0, u;
vo, v) where uy, v, are basis populations chosen from the ‘Left’ and ‘Right’ sets
and u, v are other populations from these sets. We use a Hotelling’s T? test*® to
evaluate whether the matrix of size (L—1)*(R—1), where L, R are the sizes of the
‘Left’ and ‘Right’ sets has rank m. If this is the case, we can conclude that the ‘Left’
set is related via at least N=m+1 streams of ancestry differently to the ‘Right’ set.
We use the parameter allsnps: YES which computes each f;-statistic based on the
full set of SNPs with coverage among the four populations used in the statistic
(without regard to whether the SNPs are covered in the other populations in the
‘Left’ and ‘Right’ sets).

Inferring mixture proportions without an explicit phylogeny. We used the
qpAdm methodology described in Supplementary Information, section 10 of ref. 7
to estimate the proportions of ancestry in a Test population deriving from a mixture
of N ‘reference’ populations by exploiting (but not explicitly modelling) shared
genetic drift with a set of ‘Outgroup’ populations (Supplementary Information,
section 7). We set the details: YES parameter, which reports a normally distributed
Z-score estimated with a block jack-knife for the difference between the statistics
fauo, Test; vo, v) and fs(uo, Estimated Test; vy, v) where Estimated Test is

SN aif, (o, Ref;; vo, v), the average of these f;-statistics weighed by the mixture
proportions ¢ from the N reference populations. We use the allsnps: YES
parameter.

Modelling admixture from ghost populations. We model admixture from a
‘ghost’ (unobserved) population X in the specific case that X has part of its ancestry
from two unobserved ancestral populations p and g. Any population X composed

of the same populations p and g resides on a line defined by two observed reference
populations r; and r, composed of the same elements p and g according to a
parametric equation x = r; + A(r, — r1) with real-valued parameter A\. We define
and solve the optimization problem of fitting A and obtain mixture proportions
(Supplementary Information, section 10).

Code availability. Code implementing the newly developed method for modelling
admixture from ghost populations is available on request from L.L.
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Extended Data Figure 1 | Principal components analysis of 991 present-day West Eurasians. The PCA analysis is performed on the same set of
individuals as are reported in Fig. 1b, using EIGENSOFT. Here, we colour the samples by population (to highlight the present-day populations) instead of
using grey points as in Fig. 1b (where the goal is to highlight ancient samples).
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Extended Data Figure 2 | Genetic structure in ancient West Eurasian samples for K= 11 clusters. b, Pairwise Fsr between 19 Ancient West
populations across time and decline of genetic differentiation over Eurasian populations (arranged in approximate chronological order),
time. a, ADMIXTURE model-based clustering analysis of 2,583 present- and select present-day populations.

day humans and 281 ancient samples; we show the results only for ancient
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matrix of plots represents a major region and each row the earliest population with at least two individuals from each major region.

Extended Data Figure 4 | Reduction of genetic differentiat
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Extended Data Figure 7 | Admixture from ghost populations using population on the Iran_ChL—Steppe_EMBA cline. ¢, Caucasus hunter-
‘cline intersection’ a-f, We model each Test population (purple) as gatherers (CHG) are a mixture of Iran_N and both WHG and EHG.
a mixture (pink) of a fixed reference population (blue) and a ghost d, Late Neolithic/Bronze Age Europeans are a mixture of the preceding
population (orange) residing on the cline defined by two other populations ~ Europe_ MNChL population and a population with both EHG and
(red and green) according to the visualization method of Supplementary Iran_ChL ancestry. e, Somali are a mixture of Mota* and a population on
Information, section 10. a, Early/Middle Bronze Age steppe populations the Iran_ChL—Levant_BA cline. f, Eastern European hunter-gatherers
are a mixture of Iran_ChL and a population on the WHG—SHG cline. (EHG) are a mixture of WHG and a population on the Onge—Han cline.

b, Scandinavian hunter-gatherers (SHG) are a mixture of WHG and a
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hunter-gatherers (WHG, SHG, EHG) and Eastern non-Africans in the
space of outgroup f3-statistics of the form f3(Mbuti; Papuan, Test) and
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Extended Data Table 1 | No evidence for admixture related to sub-Saharan Africans in Natufians

Other Ancient African fa(Natufian, Other Ancient; African, Chimp) Z Number of SNPs
EHG Mbuti -0.00044 -1.0 254033
EHG Yoruba 0.00029 0.7 254033
EHG Ju_hoan_North -0.00015 -0.4 254033
EHG Mota -0.00022 -0.4 253986
WHG Mbuti -0.00067 -1.7 261514
WHG Yoruba -0.00045 -1.1 261514
WHG Ju_hoan_North -0.00046 -1.2 261514
WHG Mota -0.00129 -2.3 261461
SHG Mbuti -0.00076 -2.0 255686
SHG Yoruba -0.00039 -1.0 255686
SHG Ju_hoan_North -0.00052 -1.4 255686
SHG Mota -0.00091 -1.7 255641
Switzerland_ HG  Mbuti -0.00018 -0.4 261322
Switzerland_ HG  Yoruba 0.00019 04 261322
Switzerland_ HG Ju_hoan_North 0.00009 0.2 261322
Switzerland_HG Mota -0.00062 -0.9 261276
Kostenki14 Mbuti 0.00034 0.7 246765
Kostenki14 Yoruba 0.00120 2.3 246765
Kostenki14 Ju_hoan_North 0.00069 1.4 246765
Kostenki14 Mota 0.00036 0.5 246719
MA1 Mbuti -0.00038 -0.7 191819
MA1 Yoruba 0.00009 0.2 191819
MA1 Ju_hoan_North -0.00010 -0.2 191819
MA1 Mota -0.00038 -0.5 191782
CHG Mbuti -0.00051 -1.2 261505
CHG Yoruba -0.00012 -0.3 261505
CHG Ju_hoan_North -0.00013 -0.3 261505
CHG Mota -0.00042 -0.7 261456
Iran_N Mbuti -0.00018 -0.4 232927
Iran_N Yoruba 0.00036 0.8 232927
Iran_N Ju_hoan_North 0.00041 0.9 232927
Iran_N Mota 0.00006 0.1 232880

We computed the statistic f4(Natufian, Other Ancient; African, Chimp) varying African to be Mbuti, Yoruba, Ju_hoan_North, or the ancient Mota individual. Gene flow between Natufians and African
populations would be expected to bias these statistics positive. However, we find most of them to be negative in sign and all of them to be non-significant (|Z| < 3), providing no evidence that
Natufians differ from other ancient samples with respect to African populations.
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Extended Data Table 2 | Admixture f3-statistics

Test Reference, Reference, fy(Test; Reference,, Refrence;)  Z-score  Number of SNPs
Anatolia_N Iberia_BA Levant_N -0.00034 -0.2 111632
Armenia_ChL EHG Levant_N -0.00249 -1.5 167020
Armenia_EBA Anatolia_N CHG -0.01017 -7.9 195596
Armenia_MLBA Anatolia_N Steppe_EMBA -0.00809 -7.3 203796
CHG Anatolia_ChL Iran_Hotulllb 0.02612 3.6 9884
EHG Steppe_Eneolithic ~ Switzerland_HG -0.00282 -0.9 67938
Europe_EN Anatolia_N WHG -0.00494 -11.2 380684
Europe_LNBA Europe_MNChL Steppe_EMBA -0.00920 -41.8 414782
Europe_MNChL Anatolia_N WHG -0.01351 -26.8 363672
Iran_ChL Anatolia_N Iran_N -0.01285 -10.6 167941
Iran_N Iran_LN Gana -0.00462 -1.1 17804
Levant_BA Iran_N Levant_N -0.00853 -4.7 118269
Levant_N Europe_MNChL Natufian -0.00671 -3.6 61845
Natufian Iberia_BA Iran_Hotulllb 0.07613 3.4 1054
SHG Steppe_Eneolithic Switzerland_HG 0.00728 3.2 154825
Steppe_EMBA EHG Abkhasian -0.00756 -11.2 349359
Steppe_Eneolithic EHG Iran_LN -0.01637 -4.2 25100
Steppe_MLBA Europe_MNChL Steppe_EMBA -0.00573 -18.0 378298
WHG Switzerland_HG Saudi -0.01562 -7.7 218758
Abkhasian CHG Sardinian -0.00754 -13.1 387956
Adygei Anatolia_N Eskimo -0.00699 -14.4 413128
Albanian Europe_EN Burusho -0.00650 -16.8 395851
Armenian Anatolia_N Sindhi -0.00603 -19.5 406021
Assyrian Iran_N Sardinian -0.00672 -11.8 309055
Balkar Anatolia_N Chukchi -0.00975 -18.8 401928
Basque Switzerland_HG Druze -0.00726 -12.6 416070
BedouinA Europe_EN Yoruba -0.01584 -42.8 460762
BedouinB Iran_Hotulllb Natufian 0.01384 4.1 32266
Belarusian WHG Iranian -0.00974 -19.8 392363
Bulgarian Anatolia_N Steppe_EMBA -0.00807 -26.7 400263
Canary_lslander Europe_MNChL Mende -0.00829 -5.9 353172
Chechen Anatolia_N Eskimo -0.00440 -7.9 396678
Croatian WHG Druze -0.00871 -18.6 394032
Cypriot Anatolia_N Sindhi -0.00562 -16.1 401141
Czech SHG Druze -0.00919 -21.7 374705
Druze Iran_N Sardinian -0.00269 -5.8 343813
English Steppe_EMBA Sardinian -0.00628 -20.6 402502
Estonian SHG Druze -0.00789 -17.6 371575
Finnish SHG Assyrian -0.00716 -12.6 355744
French Steppe_EMBA Sardinian -0.00669 -37.9 441807
Georgian CHG Sardinian -0.00782 -13.7 390744
German WHG Druze -0.01103 -22.9 391302
Greek Europe_EN Pathan -0.00600 -30.0 421984
Hungarian Steppe_EMBA Sardinian -0.00644 -31.2 420017
Icelandic WHG Abkhasian -0.00974 -17.0 394625
Iranian Anatolia_N Sindhi -0.00594 -30.9 443011
Irish Steppe_EMBA Sardinian -0.00590 -22.8 416663
Irish_Ulster SHG Assyrian -0.00909 -15.6 350547
Italian_North Europe_EN Steppe_EMBA -0.00627 -26.4 419169
Italian_South Iberia_BA Iran_Hotulllb 0.01224 2.6 17678
Jew_Ashkenazi Anatolia_N Koryak -0.00532 -9.4 389012
Jew_Georgian Iran_N Sardinian -0.00306 -4.2 292410
Jew_lranian Iran_N Sardinian -0.00385 -5.8 302446
Jew_lraqi Iran_N Sardinian -0.00486 -6.5 287673
Jew_Libyan Europe_EN Yoruba -0.00397 -7.2 415797
Jew_Moroccan Europe_EN Yoruba -0.00649 -10.9 405193
Jew_Tunisian Anatolia_N Mende -0.00276 -4.1 399354
Jew_Turkish Anatolia_N Burusho -0.00571 -16.4 405254
Jew_Yemenite Natufian Kalash -0.00341 -3.8 174052
Jordanian Europe_EN Yoruba -0.01283 -26.7 423649
Kumyk Anatolia_N Chukchi -0.01025 -19.6 396439
Lebanese Anatolia_N Yoruba -0.01022 -19.5 414854
Lebanese_Christian ~ Anatolia_N Sindhi -0.00504 -15.7 404858
Lebanese_Muslim Anatolia_N Brahmin_Tiwari -0.00616 -20.4 415129
Lezgin Steppe_EMBA Jew_Yemenite -0.00481 -13.1 398974
Lithuanian WHG Abkhasian -0.00999 -17.7 386718
Maltese Anatolia_N Brahmin_Tiwari -0.00518 -14.5 404438
Mordovian WHG Iranian -0.00912 -18.4 395230
North_Ossetian Anatolia_N Chukchi -0.00894 -17.2 401729
Norwegian WHG Abkhasian -0.00957 -16.5 393546
Orcadian SHG Druze -0.00662 -15.8 379656
Palestinian Europe_EN Yoruba -0.01129 -31.3 464066
Polish SHG Druze -0.00924 -27.8 394654
Romanian Europe_EN Steppe_EMBA -0.00549 -16.9 397119
Russian SHG Turkish -0.00731 -25.0 398393
Sardinian Anatolia_N Switzerland_HG -0.00587 -9.6 417931
Saudi Anatolia_N Dinka -0.00326 -5.1 404923
Scottish Steppe_EMBA Sardinian -0.00622 -26.6 426660
Shetlandic WHG Abkhasian -0.00868 -14.6 386562
Sicilian Anatolia_N Brahmin_Tiwari -0.00646 -22.2 411481
Sorb SHG Palestinian -0.00787 -16.8 366924
Spanish Steppe_EMBA Sardinian -0.00557 -32.2 447735
Spanish_North WHG Armenian -0.00825 -10.9 356832
Syrian Europe_EN Dinka -0.01002 -17.3 410920
Turkish Europe_EN Sindhi -0.00709 -41.1 448975
Ukrainian WHG Abkhasian -0.01183 -21.4 388282

We show the lowest Z-score of the statistic f3(Test; Reference, Refrences) for Test populations with at least 2 individuals and every pair (Reference;, Refrence;) of ancient or present-day source
populations. Z-scores lower than —3 are highlighted and indicate that the Test population is admixed from sources related to (but not identical to) the reference populations. Z-scores greater than —3
are consistent with the population either being admixed or not.
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