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Abstract

The analysis of genetic variation to estimate demographic and historical parameters and

to quantitatively compare alternative scenarios recently gained a powerful and flexible

approach: the Approximate Bayesian Computation (ABC). The likelihood functions does

not need to be theoretically specified, but posterior distributions can be approximated by

simulation even assuming very complex population models including both natural and

human-induced processes. Prior information can be easily incorporated and the quality

of the results can be analysed with rather limited additional effort. ABC is not a

statistical analysis per se, but rather a statistical framework and any specific application

is a sort of hybrid between a simulation and a data-analysis study. Complete software

packages performing the necessary steps under a set of models and for specific genetic

markers are already available, but the flexibility of the method is better exploited

combining different programs. Many questions relevant in ecology can be addressed

using ABC, but adequate amount of time should be dedicated to decide among

alternative options and to evaluate the results. In this paper we will describe and

critically comment on the different steps of an ABC analysis, analyse some of the

published applications of ABC and provide user guidelines.
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Introduction

Population genetics is the analysis and understanding of

genetic variation within and between populations. Early

population geneticists, possibly also as a consequence

of the paucity of empirical data, were mainly concer-

ned with the theoretical framework of this discipline.

Assuming simple demographic and evolutionary mod-

els, expected genetic variation patterns were theoreti-

cally predicted and sometimes compared with the

available genetic information. During an intermediate

phase from the 1970s to the early 1990s, when classical

genetic markers were easily typed and the use of molec-
nce: Giorgio Bertorelle, Fax: +390532249771;
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ular markers began to spread following the introduction

of the PCR, descriptive analyses of genetic variation

dominated. Methods such principal component analysis

(PCA), spatial autocorrelation, and analysis of molecular

variance (AMOVA) were widely used to describe patterns

and informally compare hypotheses (e.g. Menozzi et al.

1978; Sokal et al. 1987; Excoffier et al. 1992). Parameter

estimation and probability-based comparison of differ-

ent scenarios were limited and imprecise, due to the fact

that contemporary models were unrealistic and that

more complex demographic and genetic models were

theoretically intractable or computationally prohibitive.

More recently, the increased speed and power of per-

sonal computers favoured the spread of Monte Carlo

algorithms. Likelihood functions can be approximated

thanks to Markov Chain Monte Carlo (MCMC) methods
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(e.g. Kuhner et al. 1995; Nielsen & Wakeley 2001; Drum-

mond et al. 2002) and brute power can be used to simu-

late gene genealogies under virtually any demographic

and genetic model and to approximate the likelihood

functions even without explicitly defining them (e.g. Fu

& Li 1997; Tavare et al. 1997; Beaumont et al. 2002). This

latter approach, called approximate Bayesian computa-

tion (ABC) in its Bayesian version, is the topic of this

review. We believe that ABC is matching, for the first

time in population genetics studies, abundant genetic

data and realistic (which usually means complex) evolu-

tionary scenarios, allowing (i) the simultaneous estima-

tion of posterior distributions for many parameters

relevant in ecological studies; (ii) the probabilistic com-

parison of alternative models; and (iii) the quantitative

evaluation of the results’ credibility.

Approximate Bayesian computation is intuitively very

easy: millions of genealogies are simulated assuming

different parameter values and under different models

and the simulations that produce genetic variation pat-

terns close to the observed data are retained and analy-

sed in detail. Parameter values and model features in

the retained simulations are of course interesting since

they are able to generate data sets with some properties,

measured by summary statistics (SuSt hereafter), found

in the observed data. At the same time, even if software

packages are now available (e.g. Cornuet et al. 2008;

Wegmann et al. 2010), ABC is not (yet?) user-friendly.

Users are typically required to: (i) carefully consider

each step in the ABC protocol since consensus on the

best way to proceed has not been reached; and (ii) esti-

mate the quality of the final results. In short, ABC is

mathematically graceless and rather intricate to apply,

but very flexible and powerful. In this review we will

describe and critically comment on the different steps

of an ABC analysis, analyse some of the published

applications of ABC and provide throughout the paper

some user guidelines. We will not discuss the recent

criticisms to ABC and in general to Bayesian methods

(Templeton 2010a,b). Detailed answers can be found,

for example, in Beaumont et al. (2010).

First of all, we present the main ABC concepts in a

historical perspective.
ABC: main concepts and history

Origins

The basic idea of ABC can be found in two papers pub-

lished in February 1997. Stimulated by Templeton

(1993) to find a correct estimator of the time to the most

recent common ancestor (TMRCA) for a set of DNA

sequences and assuming a simple demographic model

of a single demographically stable population, Fu & Li
(1997) and Tavaré et al. (1997) proposed simulating arti-

ficial data-sets and using SuSt to select among them.

The selected data-sets, used to estimate the posterior

distribution of the TMRCA, were either those having

exactly the same maximum number of pairwise differ-

ences kmax as the observed data set (Fu & Li 1997) or

those having a gene genealogy whose total length was

compatible with the observed number of segregating

sites, S (Tavare et al. 1997). The former approach can be

almost considered ‘theory-free’, since knowledge of

probability functions is not needed to approximate like-

lihood or posterior densities of the quantities of interest

under any specified demographic and mutational

model. This is the reason why the Fu & Li (1997) idea

can, in principle, be applied to any demographic sce-

nario, favouring its spread and extension with little

theoretical effort. On the other hand, the algorithm pro-

posed by Tavaré et al. (1997) had the merit of explicitly

introducing the Bayesian component [the parameter

h = 4Nl was not fixed as in Fu & Li (1997), but sam-

pled from a prior distribution], which is a key aspect of

modern ABC.

All the information contained in the data is not cap-

tured by a single SuSt. Also, if simulated data-sets are

retained only when they show a SuSt identical to the

SuSt observed in the real data, a large number of simu-

lations are discarded. Weiss & Von Haessler (1998)

addressed these two different but related problems

suggesting that more SuSt should be used to better

compute the distance between simulated and observed

data sets and only the simulations in which the distance

between simulated and observed data sets was higher

than a specific threshold should be discarded. In partic-

ular, Weiss & Von Haessler (1998) used S and k as

SuSt, where k is the mean pairwise difference between

DNA sequences, and applied the distance threshold to

k excluding the simulations where |k¢ – k| was larger

than 0.2 (| | indicates the absolute value, and the pres-

ence or absence of the prime refers to the SuSt in the

simulated and real the data sets, respectively). Weiss &

Von Haessler (1998) also pioneered the use of simula-

tions and SuSt to compare alternative demographic

models, but did not incorporate, as was done a year

later by Pritchard et al. (1999), the Bayesian step sug-

gested by Tavaré et al. (1997).

In synthesis, the most important aspect of ABC which

favoured its rapid development is that the likelihood

function does not need to be specified. Using ABC, the

posterior distribution of a parameter given the observed

data, P(h|D), can be empirically reconstructed since the

likelihood is positively related to the distance between

summary statistics computed in real and simulated

data sets. More formally, when data are replaced by

summary statistics, the reconstructed distribution is
� 2010 Blackwell Publishing Ltd
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P(h|q(SuStsim,SuSt) £ e) (hereafter, P(h|q£ e), where q is

any distance metrics between observed and simulated

SuSt and e an arbitrary threshold. In the limit of e fi 0

and if SuSt are sufficient (i.e. they capture all the rele-

vant features of the data), P(h|q£ e) will match exactly

P(h|D). The idea of ABC is that a good balance

between accuracy and efficiency can be reached for

small values of e.
The formal definition of ABC

Beaumont et al. (2002) formalized and generalized the

ABC approach. They introduced a series of improve-

ments, evaluated the performance of ABC finding a rea-

sonably good agreement with full-likelihood methods

under some simple scenarios and discussed in some

detail the challenging aspects associated with the choice

of SuSt and of the most appropriate distance threshold

e. The actual birth of ABC coincides with this study.

The major improvement introduced by Beaumont

et al. (2002) is the regression step. Roughly speaking, the

slope of the regression line (regression is linear) between

a parameter and the vector of SuSt, estimated using the

retained simulations (regression is local) and giving

more weight to the simulations producing SuSt closer to

the observed values (regression is weighted), is used to

modify the retained parameters’ values and thus mimics

a situation in which all simulations produce SuSt equal

the observed values. If the chosen e is very low, the

regression step is unnecessary, but the acceptance rate

will be very low and a very large numbers of simula-

tions will be required in most cases. Increasing e, the

acceptance rate obviously increases, but in this case

the regression step becomes important to improve the

approximation of P(h|q = 0) by P(h|q < e). For multiple

SuSt, q is usually computed as the Euclidean distance

between observed and simulated SuSt. The regression

step aims specifically at reducing this discrepancy

between simulated and observed SuSt by weighting and

adjusting the parameters in the retained simulations,

thus requiring fewer simulations. In these circum-

stances, Beaumont et al. (2002) showed that the regres-

sion method clearly outperforms the simple rejection

algorithm, in which retained parameters are directly

used to reconstruct their posterior distribution.

Recently, Leuenberger & Wegmann (2010) reformu-

lated the regression step using the General Linear

Model (GLM). SuSt are here response variables with

explicit causes within the model, whereas the regression

model introduced by Beaumont et al. (2002) considered

the SuSt as explanatory variables. Some pros and cons

of this approach are discussed in the ‘Step 8¢ section.

Under a simple one-population model which allows

(for comparison) the analytical computation of the
� 2010 Blackwell Publishing Ltd
results, the ABC-GLM approach provide a good

approximation of the posterior probability of the

parameters [i.e. it produces P(h|q< e) close to (P(h|D)],

even when the chosen e was moderately large (Leuen-

berger & Wegmann 2010).
ABC, MCMC and importance sampling

All simulations are independent under the ABC

approach. This means that if a simulated genealogy

produces an interesting data-set, i.e. a data-set with

SuSt very similar to the observed values, the next simu-

lation can be absolutely useless. In other words,

approaching by chance the real values of the parame-

ters during the simulations does not affect the machin-

ery of the method. This sounds inefficient and

Marjoram et al. (2003) introduced an algorithm to link

simulations along a Markov chain path. The parameters

for each new simulation are no longer sampled ran-

domly from their prior distributions but are obtained

starting from the values used in the previous simula-

tion. The parameter space is explored as in classical

MCMC methods, but a substantial difference is intro-

duced. In the Metropolis–Hasting ratio, which is used

to decide whether or not to accept a proposed parame-

ter value, the likelihood term is replaced by an indicator

function that takes a value of 1 if a simulated data set

produces a distance between observed and simulated

SuSt below e and 0 otherwise. As expected, the accep-

tance ratio and thus the algorithm speed increase, but

simulations are not independent any more. One practi-

cal advantage of ABC, that simulations for a single

analysis can be run on many independent computers

and simply pooled at the end, is therefore lost with the

introduction of MCMC (but see Wegmann et al. 2009

for a possible solution). Embedding the ABC analysis in

a MCMC setting raises new problems, some of which

are common to any MCMC analysis (e.g. determining

the length of the chain, monitoring its mixing and

assessing the convergence) and some others are specific

of ABC–MCMC. Among the latter, the choice of e and

the definition of the proposal distribution appear crucial

to prevent the chain to stick to regions of low likelihood

(Sisson et al. 2007). Bortot et al. (2007) proposed to aug-

ment the parameter space by treating e as an additional

parameter and Wegmann et al. (2009) introduced a pre-

liminary simulation step to select the threshold e and to

set the proposal distribution.

Additional Monte Carlo schemes, such as population

(Cappè et al. 2004) and sequential (Doucet et al. 2001)

Monte Carlo, are under development. Here, importance

sampling arguments in various flavours and with vari-

ous acronyms (ABC-PRC, ABC-PMC, ABC-SMC) are

used with the same purpose of MCMC settings to better
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explore the parameter space, avoiding the simulation

(and the analysis) of unrealistic scenarios (see e.g. Sis-

son et al. 2007; Beaumont et al. 2009; Toni et al. 2009).

Preliminary simulations are used to identify a set of

parameters vectors, called particles, which are within a

certain distance e from the observed data. The particles

are then repeatedly re-sampled (according to a weight-

ing scheme that considers the prior distributions), per-

turbed (using a transition kernel) and filtered (on the

basis of new set of simulations and a decreased thresh-

old e). The particles after this iterative process tend to

converge to a sample from the posterior distribution of

the parameters. A final regression adjustment on the

retained parameters can be easily applied to all these,

as well as MCMC, algorithms (Beaumont et al. 2009;

Wegmann et al. 2009; Leuenberger & Wegmann 2010).

The performances of ABC modified via MCMC or

importance sampling have been analysed on simple sim-

ulated or real data sets, but the few results available

appear controversial. For example, standard ABC, ABC-

PMC (ABC with population Monte Carlo, Beaumont

et al. 2009) and ABC-MCMC (under the Bortot et al. 2007

implementation) behave similarly when the computing

times are kept identical [Fig. 2 in Beaumont et al.(2009)],

whereas the ABC-MCMC implemented by Wegmann

et al. (2009) seems to reach the performances of conven-

tional ABC with a reduction of computational time.
ABC and model selection

Selecting among alternative models under the conven-

tional ABC framework is, at least in principle, even sim-

pler than parameter estimation. The mechanism of the

direct method introduced by Weiss & Von Haessler

(1998) and Pritchard et al. (1999) is straightforward.

After pooling all the simulations generated by different

models and retaining only those within a distance

threshold from the real data, the posterior probabilities

of each model is approximated by the fraction of simu-

lations produced by each of them. Accuracy can be very

low if the distance threshold e is not close to 0, but can

be improved using the logistic regression approach

introduced by Beaumont (2008). The direct and the

logistic approaches have been used and compared in

various studies (Beaumont 2008; Cornuet et al. 2008;

Guillemaud et al. 2010) and the possible advantages of

some recent and more complex alternatives (see Toni

et al. 2009; Leuenberger & Wegmann 2010) are under

investigation.
ABC in nine steps

Here we update, extend and generalize the ABC

scheme reported in Excoffier et al. (2005). The steps of a
standard ABC analysis, which should be more techni-

cally defined as ‘rejection ABC’, are reported in Fig. 1.

Running such ABC analysis rigorously requires careful

development of each module, assemblage and valida-

tion.

Recently, two implementations of non-standard ABC

(using MCMC and PMC) have become available for gen-

eral users within the set of programs called ABCtoolbox

(Wegmann et al. 2010). The use of these variants implies

the replacement of a specific ABC module, but the gen-

eral scheme and strategy for the whole analysis does not

vary. We have therefore limited our description to the

standard ABC.
Step 1: setting the scene

The model, i.e. the history and the demography of the

populations with the associated parameters together

with the genetic parameters relevant for the typed loci,

needs to be clearly specified. Unsampled populations

can and should be included in the model if they are

potentially relevant for the sampled populations. In

principle, the complexity of the scenario is not a limit-

ing factor. Almost any demographic event, including

migration, colonization, extinctions, divergence, popula-

tion size changes, mass migrations or translocations,

can be easily simulated and thus considered by ABC.

Given this opportunity offered by ABC, it is easy to

understand why classical population genetics models

such as the stepping stone model (Kimura & Weiss

1964) or the divergence-with-isolation model (Wakeley

& Hey 1997) appear unrealistic.

The parameters used to specify the model for an ABC

analysis are the classic demographic and ecological

parameters (e.g. population sizes, migration ⁄ growth ⁄
admixture rates, carrying capacities), the ages of any

sort of natural or human-mediated population event

(e.g. population split, translocation, invasion, bottle-

neck) and the genetic parameters (mutation and recom-

bination rates with associated sub-parameters if

needed). Under the hyperprior approach, particularly

suitable for situations in which many loci and ⁄ or many

species are simultaneously analysed (Excoffier et al.

2005; Hickerson et al. 2006; Beaumont 2008) the param-

eterization is hierarchical: hyper-parameters define

some general feature (e.g. the mean mutation rate at a

certain number of microsatellites) and single parameters

are defined conditionally. In this way, the parameter

space is explored more efficiently and more meaning-

fully. In principle, even aspects strictly related to the

structure of the model, such as the size of river seg-

ments (see Neuenschwander et al. 2008) or the number

of populations, can be defined as parameters to be

estimated. This approach can be useful especially in
� 2010 Blackwell Publishing Ltd
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preliminary ABC tests to identify and then fix, some

aspects of the model.

Depending on the available data and on the relative

influence of different events and parameters on the

genetic variation pattern, increasing the complexity of

the model can be either useless, time consuming or

result in poor exploration of the parameter space. Some

simple reasoning or preliminary simulations can be

used to better understand the impact of different

aspects of the model on the genetic variation pattern

and, consequently, used to fix the value of some param-

eters and ⁄ or simplify the model (e.g. Estoup & Clegg

2003; Pascual et al. 2007; Ludwig et al. 2008). We

believe, however, that ABC should be, at least at the

beginning of the analysis, used at its maximum poten-

tial power, i.e. devising realistic models. A detailed

analysis of the results, also comparing different runs

(e.g. Hickerson et al. 2006), will help to determine their

robustness.

Clearly, if different models are going to be compared,

all of them need to be defined at the outset. Models can

be nested or non-nested and it may be also interesting

to compare the differences between the results provided

by ABC under realistic and simplified versions of a

model.
Step 2: incorporating the prior information

As in typical Bayesian settings, prior information can

and should be incorporated in the ABC analysis. Prior

beliefs regarding the parameters and the models (if dif-

ferent models are compared) will be used to modify the

information contained in the data to obtain the poster-

ior distributions. These beliefs are incorporated in stan-

dard ABC analyses in the simulation step (Step 3), i.e.

when the parameters used to simulate each genetic var-

iation data will have values sampled from their prior

distributions and the number of simulations performed

using each of the different models will be proportional

to the prior probability assigned to each model.

Prior distributions should be obviously large enough

to include all the values which are considered at least

possible and their shape may well vary among parame-

ters. For example, mutation rates are often sampled

from gamma distributions, migration rates from expo-

nential distributions, times from uniform or exponential

distributions and population size from uniform or log-

uniform distribution. These choices may reflect previous

knowledge on some parameters (e.g. the gamma distri-

bution usually fit well real mutational data) and ⁄ or the

need to homogeneously sample the parameter across

different orders of magnitude (e.g. migration rates

between 10)5 and 10)1). Of course, if the value of a

parameter is known with relatively high precision [e.g.
the starting time of an invasion (Pascual et al. 2007)],

the parameter should be fixed in the simulations. When

different scenarios are compared, they are usually con-

sidered with the same prior probability.

Sometimes, prior distributions are slightly modified if

‘first shot’ simulations produce data sets very different

from the observed data. This strategy can be necessary

in some circumstances, it can be regarded (Gelman

2008) as a test of prior beliefs when combined with

appropriate quality controls (see steps 7 and 9), but it

should be honestly and carefully adopted. There is

clearly a potential difficulty in using the data twice,

both for estimation and to ‘refine’ the priors and the

resulting posterior distributions will not be ‘true’ Bayes-

ian combinations of prior beliefs and likelihoods.

There are clear computation and logical advantages

in using prior distributions and the Bayesian approach

compared for example, to maximum likelihood meth-

ods, even when the prior knowledge is very limited

and consequently flat and wide prior distributions are

used (Huelsenbeck et al. 2001; Holder & Lewis 2003;

Beaumont & Rannala 2004). However, we believe that

more efforts should be dedicated to identifying infor-

mation to incorporate with confidence in the prior dis-

tributions, using previous genetic or non-genetic

studies. These efforts can be facilitated by the hyperpri-

or approach whereby at least the hyperprior distribu-

tions can be narrowed. For multilocus microsatellite

data for example, the mean and the variance (the

hyper-parameters) of the mutation rates are reasonably

well known, whereas the single-locus rates are not.

Incorporating robust prior beliefs will produce more

accurate and precise estimations and it will also facili-

tate the interpretation of the results. When prior defini-

tions are based on vague information, the effects of

errors in prior beliefs can, and should, be efficiently

investigated with a sensitivity analysis within the ABC

framework (e.g. Pritchard et al. 1999; Estoup et al. 2001;

Hickerson et al. 2006; Verdu et al. 2009; Guillemaud

et al. 2010).
Step 3: choosing the summary statistics

The whole ABC machinery is based on the comparison

between observed and simulated data sets and this

comparison is made after reducing data sets to sum-

mary statistics, SuSt. Unfortunately, there is still no gen-

eral rule as to which and how many SuSt should be

used, although the importance of this step was already

recognized since the formal introduction of ABC (Beau-

mont et al. 2002; Marjoram et al. 2003). The selected

SuSt should be able to capture the relevant features of

the data. Ideally, SuSt should be sufficient, i.e. the pos-

terior probability of a parameter given these SuSt
� 2010 Blackwell Publishing Ltd
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should be the same as its posterior distribution given

the complete data set (Marjoram & Tavare 2006). In

practice, a SuSt should not be included in this set if it

does not provide any additional information about the

data useful for the estimation process. Easy to say, but

very difficult to realize. The sufficiency of a set of SuSt

is strictly dependent on the model, parameters and

data, meaning that some preliminary analysis is

required.

A single or few SuSt are almost always a very crude

representation of the data and likely produce biases in

ABC analyses (Marjoram et al. 2003). On the other

hand, too many SuSt (especially those providing little

information regarding the parameter being estimated)

introduce stochastic noise, reducing the fraction of

retained simulations and increasing the errors both

when the distance between observed and simulated

data sets is estimated and during the regression step

(Beaumont et al. 2002). More than 100 SuSt were used

by Rosenblum et al. (2007) to reconstruct the historical

demography of a lizard colonization process, but the

usual numbers of SuSt in published empirical studies

range between 5 and 20.

When several loci are typed, SuSt are usually means

and variances of single locus statistics (e.g. Ross-Ibarra

et al. 2009) or indices correlated to the shape of the dis-

tribution of phenotypes (e.g. AFLP data, see Foll et al.

2008) or allele (e.g. SNP data) frequencies. At least three

methods, not yet implemented for practical use, have

been suggested to identify the best set of SuSt. Hamil-

ton et al. (2005) used the determination coefficients

between each SuSt and each parameter, estimated from

a set of preliminary simulations, to weight differentially

the SuSt. The distance between observed and simulated

data sets is thus computed separately for each parame-

ter. This is not the same as selecting a subset of SuSt,

but is a criteria to avoid this selection and to almost

exclude by weighting some SuSt from the estimation

process. Joyce & Marjoram (2008) have introduced a

‘sufficiency’ score to be assigned to each SuSt in a sort

of preliminary experiment. The whole ABC estimation

step is performed several times adding and removing

different SuSt and retaining only those that significantly

modify the posterior distribution of the parameter of

interest. Wegman et al. (2009) suggest extracting a lim-

ited number of orthogonal components, appropriate to

explain the parameters variation, from a large number

of SuSt. These new variables, estimated by a partial

least square regression approach with coefficients esti-

mated on the basis of a set of preliminary simulations,

are then used as SuSt. So far, only modest advantages

of these approaches have been demonstrated. Consider-

ing the actual state of the art, we recommend a selec-

tion of the SuSt known to be informative about the
� 2010 Blackwell Publishing Ltd
parameters of interest, an appropriate number of simu-

lations (see below) and, in particular, some preliminary

tests showing that the selected SuSt can be used to rea-

sonably recover models and parameters in data sets

simulated under scenarios relevant for the addressed

question (see e.g. Becquet & Przeworski 2007; Rosenb-

lum et al. 2007; Neuenschwander et al. 2008).
Step 4: simulating the model(s)

A large number of data sets should be simulated under

the model(s) defined at Step 1, with each simulation

using a different set of parameter values sampled from

the corresponding prior distribution. Simulation is the

time-consuming step, but an important advantage of

standard ABC (but not of ABC coupled with MCMC or

importance sampling) is that the data sets generated by

simulation can be used for estimation or model selec-

tion on many different data sets. The simulated data

sets, which are commonly reduced to the values of the

chosen SuSt due to disk space limitations, are stored in

the reference table. The same reference table can then be

used for inference on the real data sets but also, for

example, on pseudo-observed data sets, or pods. Pods

are specific data sets generated with known parameter

values by simulation and are very useful for investigat-

ing the bias ⁄ accuracy of the analysis (see steps 7 and 9).

The reference table is therefore very valuable, both

because it usually takes lot of computing time to gener-

ate it and because it will be recycled several times. It

seems thus a good idea to select accurately the software

for the simulations most appropriate for the scenario

and genetic markers of interest, to avoid hurried deci-

sions about the prior distributions and not to economize

on the number of simulations.

In principle, both backward coalescent and forward

classical simulations of the genetic data can be used for

ABC. In practice, only the former seem to have, today,

the required time-efficiency. Forward genetic simula-

tions have the advantage to substantially simplify the

implementation of natural selection and for this reason

they may spread for specific ABC implementations (e.g.

Itan et al. 2009). We expect that efficient forward

genetic simulator (Chadeau-Hyam et al. 2008; Hernan-

dez 2008; Carvajal-Rodriguez 2010) coupled with ABC

will be used in the near future to analyse complex sce-

nario involving both selective and demographic pro-

cesses.

The available coalescent simulation programs,

reported in Table 1 with their main characteristics, can

be classified in two major groups: ABC integrated and

ABC independent simulators. ABC integrated simula-

tors are assembled within a larger package designed to

perform all the ABC analyses. These user-friendly pack-
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ages have obvious advantages since the complete ABC

analysis can be accomplished using a single program.

Users considering these packages should, however, real-

ize that very complex models with specific prior distri-

butions of the parameters, as well as some kind of

genetic markers, may not be simulated. Similarly, other

steps of the analysis are constrained to specific func-

tions, whereas the ABC is by nature almost like brico-

lage, requiring frequent small adjustments (including

suggestions coming from new studies) and specific tests

for different data-sets. ABC non-integrated simulators

are independent programs simulating genetic variation

patterns. The best choice is probably to look initially at

the general ABC packages with integrated simulators

(see Table 1), figure out if the models and markers of

interest can be simulated, and, if not, find out if the

authors will release an updated version soon (the field

is moving fast). However, if some experience with pro-

gramming and script development is available (e.g. in

R, Phyton, or C++), choose an ABC independent simu-

lator. MS (Hudson 2002) and Simcoal2.0 (Laval & Excof-

fier 2004) are widely used ABC independent simulators.

For models which consider explicitly spatial or environ-

mental heterogeneity, i.e. where large numbers of de-

mes and their migration ⁄ colonization relationships

through time and space are assumed, Splatche (Currat

et al. 2004) or Aquasplatche (Neuenschwander 2006)

are more appropriate. Serial SimCoal (Anderson et al.

2005) can be used if ancient DNA data are available.

All these ABC independent simulators are very flexible

and allow access to the code, but need of course to be

‘pipelined’ within all the other steps of the ABC analy-

sis. The recent introduction of a series of programs

within a single ABC tool box (Wegmann et al. 2010)

will likely alleviate this problem in the future.

Finally, we have to address another question with no

general answer: how many simulations? Empirical stud-

ies seem to converge towards the order of magnitude of

106. Clearly, the complexity of the model and the

dimensions of the parameter affect the number of simu-

lations necessary to explore them. Our view is that

some preliminary simulations, for example testing the

convergence by comparing the results obtained in a few

independent analyses with 104–105 simulations, can be

very useful. In some cases, for example in the relatively

simple scenarios analysed by Guillemaud et al. (2010)

even 104 simulations appear sufficient to reach accuracy

in model selection. However, if alternative versions of

ABC (for example ABC-MCMC) are not considered,

brute power rather than style is the main feature of

ABC analyses. We suggest therefore using large CPU

clusters (now relatively cheap and commonly available

in computing departments) and performing several mil-

lions of simulations in the final analysis for both model
� 2010 Blackwell Publishing Ltd
selection and parameter estimates. The current develop-

ment of specific implementations of genetic analyses

using graphics processing units (GPU) (e.g. Suchard &

Rambaut 2009) will possibly reduce the need for large

clusters soon.
Step 5: filtering the simulations

Simulations are retained when a multivariate distance

between observed and simulated SuSt is below a certain

distance threshold. In general, a simple Euclidean dis-

tance is computed on normalized SuSt and the thresh-

old is defined such that a small fraction of the

simulations (0.1–3%), corresponding to the smallest dis-

tances, are retained for the estimation step. A condi-

tional threshold (e.g. Thornton & Andolfatto 2006;

Putnam et al. 2007) can also be devised, implying that

simulations (see step 3) are repeated until a certain

number (in the order of 103–104) of accepted simula-

tions is reached. The distance threshold can be different

in model selection (step 6) and parameter estimation

(step 8). As underlined by Guillemaud et al. (2010), the

choice of the threshold should be always validated.

Pods should be simulated under a model (or models)

relevant for the question addressed and the threshold

producing reasonably stable and accurate reconstruction

of the known scenarios should be adopted. In any case,

it is a good idea always to check the effect of using dif-

ferent threshold values on the distribution of Euclidean

distances, on the comparison between observed SuSt

(separately or combined for example using PCA) and

the corresponding simulated distributions and, obvi-

ously, on the estimated posterior distributions of the

parameters and the models.
Step 6: model selection (if different models are
compared)

In step 6 of ABC, some results are obtained at last.

Comparing models, which actually means comparing

alternative hypotheses about a process, is the key to the

work of scientists. The ABC framework allows the com-

putation of the relative weight, i.e. the posterior proba-

bility, of different hypotheses (i.e. different models).

Probably for the first time, genetic variation data can be

used not only to reconstruct a plausible historical or

demographic scenario, often combining many different

analyses and tests, but also to assign a quantitative

‘belief score’ to each of many alternative and possibly

complex scenarios. ABC should also favour a reduction

in the length of manuscripts, since elaborated argu-

ments supporting or opposing each hypothesis can be

summarized by a corresponding set of meaningful

probability scores, the sum of which is always equal to
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one. The fear is that this reduction will be compensated

by extensive, technical and somewhat boring descrip-

tion of ABC options and validation, but general readers

will be able to skip these sections and easily compre-

hend the results and main conclusions.

All the models are generally simulated the same

number of times. This is equivalent to giving the same

prior probability to each model under comparison and

zero probability to any other model. Clearly, errors in

the latter assumption may produce incorrect conclu-

sions regarding the models support (see e.g. Templeton

2009), but the ABC framework allows for the evaluation

of the effects of excluding some models in the specific

situation under investigation (Guillemaud et al. 2010).

In the final set of retained simulations, the data sets

produced by the more probable models will be over-

represented and the data sets produced by the less

probable models will be under-represented or even

absent. Intuitively, the probability of a model is propor-

tional to the relative frequency of the data sets it pro-

duces that are among the retained simulations (Weiss &

von Haeseler 1998; Pritchard et al. 1999). This frequency

is actually the direct estimator of the posterior probabil-

ity of a model, but this estimator is rarely accurate in

complex scenarios when, inevitably, the retained simu-

lations are either too few or also contain data sets not

closely matching the observed data. Recently, Leuenber-

ger & Wegmann (2010) proposed the use of a paramet-

ric General Linear Model to adjust the model

frequencies in the retained simulations. However, the

most reliable and tested method, also available in ABC

packages such as DIYABC (Cornuet et al. 2008), is still

the adjustment based on the weighted multinomial

logistic regression introduced by Beaumont (2008). The

coefficients for the regression between a model indi-

cator (response) variable and the simulated SuSt (the

explanatory variables) can be estimated, allowing the

estimation of the posterior probability for each model at

the intercept condition where observed and simulated

SuSt coincide. CIs of the probabilities can be computed

as suggested by Cornuet et al. (2008).

The posterior probability of each model is of course

an intuitive score of our belief in that model. An addi-

tional index, comparable with a standard table of refer-

ence values where the evidence is assigned to

categories from ‘not worth more than a bare mention’

to ‘decisive’, is the Bayes factor. The Bayes factor can be

easily computed in an ABC analysis, being the ratio

between the posterior probabilities estimated in any

pair of models, divided by the ratio of their prior prob-

abilities. The latter ratio is of course equal to one if all

models have the same prior probability. This index is a

summary of the evidence provided by the data if favour

of a model as opposed to another and it can be inter-
preted as a measure of the relative success of the mod-

els at predicting the data (Kass & Raftery 1995). The

Bayes factor is also the ratio of the posterior odds to the

prior odds, meaning that it actually measures the

change of relative probabilities of the various scenarios

tested in the ABC analysis due to the knowledge

obtained from the genetic data.
Step 7: quality control in model selection

The ABC framework can be used to investigate the

robustness of model selection and parameter estimation

with relatively little additional effort (e.g. Fagundes

et al. 2007; Guillemaud et al. 2010). Data sets simulated

under specific scenarios with known parameter values

are tested against the same reference table (the large

number of simulated data sets, see step 4) used in the

analysis of the real data set.

Some hundreds of pseudo-observed data sets (the

pods, see step 3) are generated using each of the scenar-

ios considered in the model selection analysis. Obvi-

ously, other scenarios can be analysed to investigate the

effects of incomplete model specification on the infer-

ence (see step 6). The values of the parameters used for

generating pods are generally restricted to the best esti-

mates obtained from the analysis of the real data, but

they can be other values of interest. Pods generated

with fixed parameters will provide information about

the quality of the estimated model probabilities which

is restricted to a specific parameter set. The ability of

ABC to identify the correct model in a larger space of

parameter values can be analysed by generating pods

using parameter values sampled from, for example, the

prior distribution (Fagundes et al. 2007; Cornuet et al.

2008; Verdu et al. 2009) or the posterior distributions

estimated from the real data set.

Even if the definitions here are not rigorous, type I

and type II errors can be estimated for each scenario,

using, in turn, each scenario as the null or alternative

hypothesis. In practice, the type I error for, say, scenario

A is estimated as the fraction of pods generated under

scenario A that support other scenarios, whereas the

type II error for scenario A is estimated as the fraction

of pods generated under all the other scenarios that

support scenario A. A single pod is considered to be

supporting a scenario simply if the posterior probability

of this scenario is the largest. So, these are not really

type I and II errors in the classical frequestist frame-

work, whereby the null hypothesis is never accepted

and is rejected only if the data are manifestly incompat-

ible with it. These estimated errors can be very useful

when small, but otherwise their joint interpretation may

not be straightforward. Some additional insight into the

accuracy and power of the analysis can be obtained by
� 2010 Blackwell Publishing Ltd
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computing mean and standard deviation of the poster-

ior probability of each model using the probabilities

estimated in the pods or the frequency of pods where

the CI of the model with the highest probability does

not overlap with the CI of the next supported model

(see Guillemaud et al. 2010). Pods could be also used to

estimate the distribution of the Bayes factor for each

simulated scenario also and thus to better interpret the

Bayes factor computed from the real data set.
Step 8: parameters estimation

For the single model considered in the analysis or for

the most supported model if different models are con-

sidered, the posterior distributions of the parameters

can be reconstructed by ABC. In many cases it is a good

idea to start looking at the estimated distribution of the

hyper-parameters or the composite parameters, the lat-

ter obtained by combining, in each simulation, the

parameters which are difficult to estimate separately

(for example, the population-mutation parameter Nl
which combines the population size N and the mutation

rate l).

As already explained, retained simulations have data

sets closer (but not identical) to the real data than do

non-retained simulations. Therefore, using the para-

meter values of the retained simulations as a sample

from their posterior probability distribution (the direct

approach), still maintains an undesirable component of

the prior. If all simulations are retained, i.e. with a

threshold of tolerance equal to infinity, the prior will be

recovered. At the other extreme, when the threshold is

proximate to 0, the direct approach works well, but

huge numbers of simulations are needed to obtain a rea-

sonable sample size from the posterior. We can imagine

that in the near future, especially if different groups will

share their reference tables, billions of simulations will

be available for the direct method. In the meantime, the

most commonly used method to adjust the imperfect

retained simulations is the local linear weighted regres-

sion introduced by Beaumont et al. (2002). The coeffi-

cients of a linear regression between each parameter and

the vector of the chosen SuSt are estimated from the

retained simulations (the local aspect) assigning to each

point a weight based on a function increasing as the dis-

tance between the observed and simulated data sets

decreases (the weighting aspect). The regression slope is

then used to adjust each parameter value from the

retained simulations towards the value expected in

correspondence with the observed SuSt. The intercept

corresponds to the posterior mean estimate of the

parameter. This approach, which can be applied to all

the parameters simultaneously, assumes local linearity

between parameters and SuSt (see Blum & Francois 2009
� 2010 Blackwell Publishing Ltd
for an extension to non-linear regression models), addi-

tivity and a multivariate normal distribution. However,

its use in the last 8 years after the original development

(Beaumont et al. 2002) suggest that small violations of

these assumptions only marginally affect the results.

The accuracy of the posterior distributions, when evalu-

ated under simple scenarios which allows also the use

of full-likelihood methods, is drastically increased by

the regression step compared to the direct approach

(Beaumont et al. 2002; Leuenberger & Wegmann 2010).

The commonly-used weighting function is the Epane-

chnikov kernel, but the effects on the final estimates of

applying other weighting schemes are probably limited.

Parameters are usually transformed before the regres-

sion step (and then back transformed after it) by a log

(e.g. Estoup et al. 2004; Hamilton et al. 2005; Crestanello

et al. 2009), logtan (e.g. Kayser et al. 2008; Ross-Ibarra

et al. 2008) or logit function (e.g. Cornuet et al. 2008).

Logtan and logit functions avoid adjustments outside

the prior distribution.

The general linear model (GLM) approach recently

proposed by Leuenberger & Wegmann (2010) and

implemented in ABCtoolbox (Wegmann et al. 2010) can

be used as an alternative method to estimate the poster-

ior distributions from the retained simulations. Addi-

tional testing is however necessary to identify the best

adjustment procedure under different conditions, since

GLM have both advantages (it considers the correlation

among SuSt and never produces posterior distributions

outside the priors) and disadvantages (it assumes nor-

mal distributions for the SuSt and is computationally

more intensive) compared to the earlier approach.

Of course, when a sample from the posterior distribu-

tion is available, point estimators and a relative measure

of accuracy are needed. Usually, a smoothed-posterior

density is fitted to the sample of adjusted parameter

values using specific methods (e.g. local-likelihood) and

after specifying a bandwidth. This fitting step is embed-

ded in the DIYABC package (Cornuet et al. 2008), but

we suggest analysing the rough-frequency distribution

of adjusted parameters to identify possible distortions

introduced by the fitting algorithm.

The point estimators usually computed from the pos-

terior densities are the mean, the mode, the median and

the intercept estimated in the regression step. No con-

sensus has been reached about the point estimator with

the smallest bias and variance and, as usual, the analy-

sis of simulated data sets relevant for the scenario of

interest can be useful. In general, however, the differ-

ences between point estimators are quite small if com-

pared with the width of their posterior distribution and

their choice is therefore almost irrelevant. Most impor-

tantly, the posterior density can be used to compute the

confidence of the estimates. Typical measures are the
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SD and the credible interval, the latter being the Bayes-

ian equivalent of the frequentist CI. A commonly used

credible interval is the X% highest posterior density or

HPD. The X% HPD interval is the interval which

includes the X% of the parameter values and within

which the density is never lower than the density out-

side it. Typically, 90 or 95 HPD limits are reported in

ABC analyses (e.g., Fagundes et al. 2007; Ludwig et al.

2008; Ray et al. 2010).
Step 9: quality control of the model and the parameters
estimation

The quality of the parameter estimates can be initially

evaluated by the proportion of parameter variance that

is explained by SuSt (see e.g. Fagundes et al. 2007;

Neuenschwander et al. 2008). This is the classical coeffi-

cient of determination. If only a small fraction of para-

meter variation in the reference table can be explained

by variation in SuSt, it is hard to imagine that the

parameter will be accurately estimated for the model(s)

under consideration and the number of individuals and

markers typed. It is possible that different SuSt might

improve the estimation (and this hypothesis can be

tested), but it is also possible that the parameter cannot

be estimated for that model ⁄ data package even if the

full likelihood could be computed. The coefficient of

determination should be taken with caution. Even a

small fraction of the explained variation can be sufficient

for reasonably precise estimates given enough data. In

analogy, population assignment of single individuals

can be quite accurate even when a small fraction of the

variation is attributed to between-population differences

(e.g. Latch et al. 2006; Colonna et al. 2009).

A more important evaluation of the quality of parame-

ter estimates under the specific scenario (or scenarios)

under investigation can be performed within the ABC

framework in exactly the same way we described for

model selection: generating pods, i.e. simulating data-

sets using known parameter values or parameter distri-

butions and analysing them (e.g. Excoffier et al. 2005;

Jensen et al. 2008). The best estimates of the parameters

obtained in step 8 (or their posterior distributions) are of

course interesting candidates for generating pods in this

analysis. For each pods, parameters are estimated using

the same reference table and the same procedure

applied to the real data and are then compared to the

true known values used to generate them. In fact, after

the analysis of, say, 1000 pods, 1000 posterior densities

will be available for each parameter. From each of these

distributions, a point estimator (e.g. the mode) and a

credible interval (e.g. the 90% HPD) can be computed

and several measures of the estimator quality can be

estimated (see e.g. Cornuet et al. 2008) by simply com-
paring these 1000 point estimators and credible intervals

with the true value of the parameter (i.e. the value used

in the simulations). The relative bias, the coefficient of

variation and the 90% or the 50% coverage (which are

the fraction of 90% or 50% HPD intervals in the 1000

simulations which include the true value), are usually

informative to ascertain the quality of the estimates. The

analysis and interpretation of other highly-correlated

measures is likely useless and confounding. Some cau-

tion is also needed in general for the interpretation of

these performance measures. For example, a relative

bias of 1 (100%) when estimating a true population size

of 1000, meaning that on the average the estimated

value will lay at a distance of 1000 individuals from the

true value, would appear enormous. But if the prior

knowledge on this parameter was entirely missing and a

uniform prior distribution ranging between 100 and

100 000 was defined, such bias should be considered

small. If possible, it is always very instructive to esti-

mate at least some parameters from the pods using

other non-ABC approaches and then compare the qual-

ity measures across methods (Guillemaud et al. 2010). A

large bias or variance using ABC can become acceptable

in comparison with the performance of other methods.

A third way to investigate the quality of the ABC

results is to compare the SuSt observed in the real data

with the posterior distribution of SuSt (e.g. Pascual

et al. 2007; Ingvarsson 2008). The posterior distribution

of SuSt is the SuSt distribution computed from pods

generated by simulation with parameters values sam-

pled from their estimated posterior distribution (Gel-

man et al. 2004). The rationale of this comparison,

which is testing the goodness-of-fit of the combination

‘scenario + posterior distributions of the parameters’ to

the data, is simple: if the estimated parameters under a

specific model have anything to do with what hap-

pened in the history of the real samples, then histories

simulated using these values should produce pods sim-

ilar to the data. If this is not the case, either the parame-

ter estimation is bad and ⁄ or the model is wrong. Using

a simple graphical inspection, the goodness-of-fit

should be considered high if the distance between

observed SuSt and the SuSt in their posterior distribu-

tion is low. A principal component analysis of the SuSt

in the real data set, the SuSt from their posterior distri-

bution and also the SuSt in the reference table can pro-

vide additional insights on the quality of the estimation

(Guillemaud et al. 2010; A. Estoup, pers. comm.). Also,

the performance of the estimation can be quantified by

computing bias and variance, relative to the observed

SuSt, of the posterior distributions of SuSt (see e.g.

Neuenschwander et al. 2008).

The comparison between observed SuSt and their

posterior distributions is also the basis for a posterior
� 2010 Blackwell Publishing Ltd
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predictive test, which is the Bayesian analogous of the

parametric bootstrap under the frequentist framework

(Gelman et al. 2004). The goodness-of-fit of the inferred

combination ‘scenario + the posterior distribution of the

parameters’ and the observed data is quantitatively mea-

sured by the posterior predictive P value. This bayesian

P value corresponds to the probability that data repli-

cated using the estimated posterior distributions of the

parameters are more extreme that the observed data

(Gelman et al. 2004). It can be specific for each SuSt (e.g.

Thornton & Andolfatto 2006) or appropriately combined

across SuSt (e.g. Ghirotto et al. 2010) and it can be also

be viewed as the probability of observing a less good fit

between the model and the data.

A posterior predictive test is a good practice in any

Bayesian model-based analysis, since it is the most

straightforward way to understand if the estimated

parameters are at least meaningful. In general, however,

its power to reject the null hypothesis under reasonable

population genetic condition and particularly when few

loci are analysed, is limited. Nonetheless, this test can

be useful to identify deviant SuSt with significant P val-

ues, possibly related to specific poorly estimated param-

eters or erroneous aspects of the demographic model.

The use of posterior predictive tests in ABC is therefore

recommended (e.g. Becquet & Przeworski 2007; Ing-

varsson 2008; Neuenschwander et al. 2008; Ghirotto

et al. 2010).
Applications

The number of published applications of ABC to

genetic variation data increased rapidly following the

formal definition of the methodology in 2002 (Beaumont

et al. 2002), doubling for example between 2007 and

2008. A bibliographic Endnote list of 107 papers on

ABC, with about two-thirds of them presenting appli-

cations to real data, is provided as ‘Supporting informa-

tion’.

Approximate Bayesian computation has been applied

to very different types of organisms, from bacteria

(e.g. Luciani et al. 2009; Wilson et al. 2009) to plants

(e.g. Francois et al. 2008; Ross-Ibarra et al. 2009) and

animals (e.g. Voje et al. 2009; Lopes & Boessenkool

2010). Microsatellite markers are the most commonly

used source of genetic information (43% of the studies),

followed by nuclear and mitochondrial DNA sequences

(each of them analysed in about 30% of the studies).

DNA data from ancient samples is included in about

10% of the studies. The number of loci varies widely

among papers, but the median value for STR and

nuclear sequences is 9 and 19, respectively.

After surveying the many options available when

running an ABC analysis, we outline in the ‘Supporting
� 2010 Blackwell Publishing Ltd
information’ the main trends. In general, we estimated

that if all the steps discussed in the previous section

were applied, about 60% of the published ABC applica-

tions would have significantly improved their robust-

ness. As positive examples of studies in the field of

molecular ecology where, in our opinion, the ABC

framework was properly used to estimate parameters,

to compare models and to evaluate the quality of the

model settings and the results, we would like to men-

tion Neuenschwander et al. (2008) and Guillemaud

et al. (2010). Neuenschwander et al. (2008) recon-

structed the dynamic of the post-glacial colonization of

a river basin in Switzerland by the European bullhead

(Cottus gobio). Guillemaud et al. (2010), after extensively

investigating the capabilities of ABC in reconstructing

different aspects of an invasion process, applied this

method to investigate alternative scenarios for the intro-

duction to Europe of the North American pest of corn

Diabrotica virgifera.

Using a subset of 14 relatively homogeneous studies

and 152 parameter estimates, we also compared prior

and posterior distributions to obtain some general indi-

cations about the fraction of uncertainty about a species

that was reduced by ABC using genetic information.

The difference in width and location between prior and

posterior distributions was not clearly related to any

general features of the data sets, the model or the ABC

setting (such as the number of loci, the number of sam-

pled individuals, the number of parameters to be esti-

mated and the number of SuSt). If applied to a single

study, this result would appear counter intuitive, since

increasing for example the number of markers should

narrow the credible intervals (Excoffier et al. 2005). The

power of our analysis is clearly limited, but it is also

possible that large differences in the informativeness of

the data sets and in the complexity of the scenarios

across studies blurred the expected pattern. At any rate,

our analysis of more than 150 posterior distributions

seems to confirm the reasonable idea that guidelines

regarding the number of individuals and markers to

analyse, the maximum allowed complexity of the model

and the number of SuSt sufficient to summarize the

data, cannot be easily identified. Such guidelines can be

very specific only for the process and species of interest,

meaning that the set of preliminary simulations

described throughout this paper can be very useful to

plan the sampling, the typing and the final ABC setting.

Additional results and details of this analysis are pro-

vided as ‘Supporting information’, Table S1 and Fig. S1.
Conclusions

Approximate Bayesian computation has a short history

and very likely a long future. Molecular variation data
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are useful to reconstruct past events, estimate biological

parameters and compare alternative scenarios. The ABC

approach has the potential to become a standard

approach in molecular ecology, as well as in other fields

(Lopes & Beaumont 2010; Lopes & Boessenkool 2010). It

allows, for the first time, the efficient exploitation of the

enormous progresses in genetic typing and computing

speed to investigate very complex population models

including both natural and human-induced processes.

Throughout this paper we have summarized the theo-

retical and practical aspects of this methodology, which

should not be considered as a statistical analysis per se

but rather as a statistical framework. We also briefly

analysed its behaviour reviewing the published applica-

tions. Overall, we tried to stimulate the general reader

to consider ABC as a possible instrument for analysing

their data and also for planning sampling and typing

strategies. Many pros and cons, together with some

practical suggestions, were given. We schematically

recall and integrate them in this final section.
Complex and specific models can be analysed

The likelihood of models and parameters does not need

to be theoretically derived. We believe that, to a reason-

able extent, initial investigations under the ABC frame-

work should always take advantage of this quality and

challenge the data using very realistic models. Our

analysis of empirical studies suggests that even a few

markers can be useful to substantially increase the

knowledge about the process of interest. This is possible

in many cases by limiting the inference to well-esti-

mated composite and hyper-parameters. Importantly,

ABC provides the instruments to understand if the set

data + models can be used or not to reconstruct the

most likely scenario and if the estimate can progress

from composite to single parameters.
Quality of estimates and model selection can be
measured

After becoming familiar with the ABC framework, qual-

ity controls and power analyses can be performed with

rather limited additional effort. The simulation results,

stored in a single reference table, allow the analysis of

the real data set as well as many other simulated data

sets of interest and the feasibility of an accurate estima-

tion or a model selection can be analysed. It is recom-

mended that large reference tables stored by different

research groups become accessible, possibly promoting

a shared repository, since some preliminary analysis

before the sampling and typing using simulated data

sets or real data sets with properties (sample sizes,

number and type of loci, etc.) matching as closely as
possible the data sets in the reference table, could be

very useful. Interestingly, all these analyses in specific

ABC settings for different species and questions will

also help in understanding the general properties of the

method. Unfortunately, quality control is more difficult

under the ABC-MCMC and related serial approaches,

since the dependency among simulated data sets pre-

vents the compilation of a reference table.
Difficulties in performing an ABC analysis are
decreasing

The conceptual scheme of ABC is quite simple and

modular, implying that end users who do not find

enough flexibility in complete ABC packages [e.g. DIY-

ABC, Cornuet et al. (2008)] can develop specific imple-

mentations using the appropriate simulator (e.g. MS)

pipelined with relatively simple algebraic or statistical

computations. The post-simulation analyses are already

coded in available and easily modifiable R scripts or

C ⁄ C++ programs. A great collection of command-line

modules useful for an ABC analysis, which includes

also samplers based on MCMC (Marjoram et al. 2003)

and PMC (Beaumont et al. 2009), is also available in the

ABCtoolbox (Wegmann et al. 2010). Important ABC

implementations for estimating for example selection

coefficients or individual-based parameters will likely

imply the development of more efficient simulators (see

e.g. Przeworski 2003; Jensen et al. 2008; Leblois et al.

2009).
Probabilities are approximated

More studies are needed to better evaluate the degree

of approximation of ABC estimates compared to full-

data likelihood methods. These studies, however, are

restricted to scenarios where explicit likelihoods func-

tions are tractable. Fortunately, the ABC approach has

the potential to be used, case by case and if properly

implemented, as a self-evaluator of its performances

under known simulated scenarios. This potential,

clearly related to the fact that an ABC application is actu-

ally a hybrid between a simulation and a data-analysis

study, can be used to understand general questions

regarding, for example, the ability of ABC to select the

true among many simulated models even when the

parameters of the model are poorly estimated.
Time and patience are required

It is very important to realize that performing an ABC

study is not at all like using other methods for the analy-

sis of genetic variation data. Even if questions of interest

can be addressed using a single complete package such
� 2010 Blackwell Publishing Ltd
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as DIYABC (Cornuet et al. 2008), adequate amount of

time should be dedicated to initially define the model(s)

and then decide among the many alternative options.

Crucial steps such as deciding on the number of simula-

tions, the SuSt and the acceptance threshold cannot be

based on general rules. The effects of these choices and

the performances of the estimates should be evaluated

and tested in each study. Fortunately, even if planning a

rigorous ABC analysis in all its steps, as well as modify-

ing the initial plan when needed, requires time and

patience, computer speed (for example exploiting hun-

dreds of CPUs and possibly, in the future, GPUs) and

data storage possibilities (terabytes are very cheap today)

are not a limiting factor in many studies. Elegant meth-

ods to efficiently reduce the number of relevant simula-

tions needed for the estimation process, such as ABC

coupled with MCMC, are under development and test-

ing, but their standardization and spread to non-experts

might not be rapid.
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Table S1 The ratio of posterior vs. prior distribution range

(RR) and the ratio of the largest vs. the smallest location mea-

sure in the posterior and the prior distributions (ER) computed

from 14 ABC studies and 152 parameter estimates. n: number

of parameter estimates subdivided into four groups; Q1 and

Q3: first and third quartile. Sample sizes are not the same for

RR and ER because the information required to compute them

was not homogeneous across studies. See text for additional

details.

Fig. S1 The relationship between ER and RR when the median

value of ER is computed separately within six RR bins. Bars

are quartiles, and the numbers indicate the fraction of point

belonging to each bin. Codes are as in Table 2.
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